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Traditional vehicle routing problems implicitly assume that only one crew operates a vehicle for the entirety

of its journey. However this assumption is violated in many applications arising in humanitarian and military

logistics. This paper considers a Joint Vehicle and Crew Routing and Scheduling Problem, in which crews are

able to interchange vehicles, resulting in space and time interdependencies between vehicle routes and crew

routes. The problem is formulated as Mixed Integer Programming (MIP) and a Constraint Programming

(CP) models that overlay crew routing constraints over a standard vehicle routing problem. The constraint

program uses a novel optimization constraint to detect infeasibility and to bound crew objectives. The paper

also explores methods using large neighborhood search over the MIP and CP models. Experimental results

indicate that modeling the vehicle and crew routing problems jointly and supporting vehicle interchanges

for crews may bring significant benefits in cost reduction compared to a method that sequentializes these

decisions.

Key words : vehicle routing, vehicle scheduling, crew routing, crew scheduling, synchronization, mixed integer
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1. Introduction

A vehicle routing problem (VRP) models a fleet of vehicles that visit various locations to perform

their duties. The task is to find least-cost routes that adhere to various restrictions on the routes

and on the vehicles. Even though VRPs can be solved in isolation, in practice, they typically appear

within a sequential optimization process that first optimizes vehicle routes and then schedules

crews given the vehicle routes (Barnhart, Lu, and Shenoi 1998). This sequential process has the

advantage of reducing the computational complexity. However, by designing vehicle routes first,
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sequential approaches may lead to suboptimal or even infeasible crew schedules since decisions in

the vehicle routing phase may ignore crew constraints and objectives. Therefore, it is desirable to

simultaneously consider vehicle and crew constraints and objectives, particularly for cases in which

crew constraints are tight or crew costs exceed vehicle costs.

This paper proposes the Joint Vehicle and Crew Routing and Scheduling Problem (JVCRSP),

which adds a second layer of routing for crews to a classical VRP. In many applications of VRPs,

goods are moved from one location to another, usually across the course of a day. The JVCRSP is

motivated by applications in humanitarian and military logistics; in these contexts, vehicles (e.g.,

airplanes) travel long routes and transport food and medical supplies across time horizons that

can span several days, and hence, determining crew schedules becomes an important part of the

problem. For example, vehicles must be operated by crews, which have limitations on their duty

times. Crews are able to interchange vehicles at different locations and to travel as passengers

before and after their duty times. The JVCRSP is extremely challenging computationally because

vehicle routes and crew routes are interdependent. Allowing crews to interchange vehicles adds an

additional time element to the problem since two vehicles must be synchronized in order for an

exchange to proceed. It is thus necessary to decide whether vehicles wait and for how long at a

location because both vehicles must be present at the same location for an interchange to occur.

This paper develops a mixed integer programming and a constraint programming formulation of

the JVCRSP that jointly optimize vehicle and crew routing and scheduling in the hope of remedying

some limitations of sequential approaches. The formulations overlay crew routing constraints over the

Pickup and Delivery Problem with Time Windows (PDPTW) and add a number of synchronization

constraints to link the vehicles and crews. In addition, the constraint programming formulation

includes a novel global optimization constraint that uses a linear relaxation to check whether the

current crew partial routes are feasible and to bound crew costs, which is crucial in the early stages

of the search when the focus is on vehicle routing.

Both the mixed integer programming and constraint programming models are each developed

into two additional models that sequentialize the vehicle routing and scheduling components in

order to evaluate the impacts of simultaneously optimizing these decisions. These six models are

then solved using a regular branch-and-bound complete tree search and a large neighborhood search,

giving a total of twelve methods.

Experimental results on instances with up to 100 requests and three cost functions indicate that (1)

the joint optimization of vehicle and crew routing can produce considerable benefits over sequential

methods, (2) the combination of constraint programming and large neighborhood search scales

significantly better than pure constraint programming and mixed integer programming approaches,

and (3) vehicle interchanges are critical for obtaining high-quality solutions. These findings indicate
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that it is now in the realm of optimization technology to simultaneously optimize vehicle and

crew routing and scheduling in a single model, and that concurrently modeling vehicle and crew

routing may bring significant benefits in cost reduction compared to methods that sequentialize

these decisions.

The remainder of this paper is organized as follows. Section 2 reviews existing work on related

problems. Section 3 describes the JVCRSP. Section 4 discusses a high-level model of the problem.

Sections 5 and 6 concretizes the high-level model as a mixed integer programming model and a

constraint programming model. Section 7 describes the large neighborhood search common to

both the mixed integer programming and constraint programming models. Section 8 summarizes

the experimental results, which are detailed in the online appendix, and Section 9 concludes this

paper. This paper is significantly expanded from a previously published conference paper (Lam,

Van Hentenryck, and Kilby 2015).

2. Literature Review

Simultaneous vehicle routing and crew scheduling problems have not attracted much interest in

the literature at this point, probably due to their inherent complexity (Drexl 2012). This section

reviews three relevant problems from the literature.

Kim, Koo, and Park (2010) considered a problem in which vehicles transport teams to service

customers. Vehicles are able to move without any team on board. The problem features three types

of tasks that must be serviced in order, and all customers have one task of each type. Each team

can only service one compatible type of task. The mixed integer programming formulation has

variables indexed by five dimensions and is intractable. The paper develops a simple local search

algorithm that is embedded within a particle swarm metaheuristic. This approach was developed

specifically for the problem and cannot easily accommodate side constraints.

Hollis, Forbes, and Douglas (2006) solved a mail distribution problem that features multiple

depots at which vehicle routes begin and end. The model was solved using a two-stage heuristic

column generation approach, which cannot be guaranteed to solve the problem to optimality. In

the first stage, trips that begin and end at the depots are computed. The second stage takes a

scheduling approach and assigns vehicles and crews to the trips. Vehicle interchange can only occur

at the depots at the start or end of a trip. In addition, the model features a 24-hour cyclic time

period and variables indexed by discretized blocks of time.

Drexl et al. (2013) considered a problem that includes European legislation and relay stations

where drivers rest and interchange vehicles. Vehicles must wait a fixed amount of time upon reaching

a relay station. Vehicle interchange can only occur if other drivers arrive at this relay station during

this time interval. The problem also provides a shuttle service, separate from the fleet of vehicles,
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that can be used to move drivers between relay stations. The problem is solved using a two-stage

large neighborhood search method. In the first stage, a vehicle routing problem is solved and the

resulting routes form the customers of another vehicle routing problem in the second stage, in which

the crews perform the role of vehicles. Observe that this approach also cannot jointly optimize

vehicle and crew routing. The model features several fixed parameters, such as the duration during

which a vehicle waits at a relay station, and a search procedure that only explores a limited number

of nearby relay stations. Both these restrictions greatly reduce the search space but negatively

impact vehicle interchange, leading the authors to conclude that allowing for vehicle interchange

does not significantly improve the objective value.

Drexl (2012) classified simultaneous vehicle routing and crew scheduling problems as a Vehicle

Routing Problem with Multiple Synchronization constraints (VRPMS). Synchronization is a feature

present in some vehicle routing problems, in which decisions about one object (e.g., vehicle, route,

request) imply actions that may or must be taken on other objects.

Drexl (2014, 2007) developed a VRPMS called the Vehicle Routing Problem with Trailers and

Transshipments (VRPTT). It features two vehicle classes: lorries which can move independently,

and trailers which must be towed by an accompanying lorry. All lorries begin at a single depot with

or without a trailer. A lorry can detach its trailer at transshipment locations to visit customers who

are unable to accommodate a trailer (e.g., due to size). Lorries can transfer load into and/or attach

with any trailer at any transshipment location. A lorry that has detached its trailer can also return

to the depot without reattaching a trailer, leaving its trailer behind at a transshipment location to

be collected by another lorry at a future time. Several sophisticated mixed integer programming

formulations were presented, which were solved using branch-and-cut on instances with up to eight

customers, eight transshipment locations and eight vehicles. Drexl (2013) argued that simultaneous

vehicle routing and crew scheduling problems can be reformulated into the VRPTT by casting

crews as lorries with zero capacity, and vehicles as trailers.

The VRPTT is most closely related to the JVCRSP since lorry routes and trailer routes are

jointly computed, and the search space is not artificially limited. A key difference is that the VRPTT

includes load synchronization, which is not considered in the JVCRSP. Load synchronization refers

to the ability to either transfer load from one vehicle to another while both are present, or partially

or fully transporting load to a transshipment location and then having a different vehicle retrieve

the load to deliver it to its final destination.

Finally, observe that vehicle and crew scheduling problems are thoroughly studied (e.g., Haase,

Desaulniers, and Desrosiers 2001, Mesquita and Paias 2008, Freling, Wagelmans, and Paixão

1999, Freling, Huisman, and Wagelmans 2001, 2003, Cordeau et al. 2001, Mercier, Cordeau, and

Soumis 2005, Mercier and Soumis 2007). These problems aim to assign vehicles and crews to a
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predetermined set of trips, with each trip consisting of a fixed route and usually with fixed arrival

and departure times. Trips in these problems correspond to parts of a route in the JVCRSP, which

are not available a priori, but instead, must be computed during search, thereby increasing the

computational challenges.

3. Problem Description

This section describes the application, reviews several classical VRPs, and introduces the JVCRSP

as an abstraction of interesting elements of the original problem. Given the complexity of the overall

problem, the research methodology is to find effective solution approaches to interesting aspects of

the application before addressing the problem as a whole.

Motivating Application The JVCRSP is motivated by an air transportation problem faced by the

Royal Australian Air Force. The challenge is to design effective routes for moving goods, known as

parcels, around the world. The majority of parcels originate in Australia and are destined for the

Asia-Pacific region. Most parcels only have a due date for arrival; parcels rarely have a due date for

departure, possibly because of ample storage space at military bases. The parcels are associated

with a weight and a 3-dimensional size of length, width and height. The sizes of the parcels vary:

they can be as small as a spare part for a plane or as large as a tank. They can also include doctors

moving to other bases in order to perform urgent medical procedures on patients, moving soldiers

on and off rotations, moving food and medical supplies to bases, keeping inventories of spare parts,

delivering mail, etc. To simplify the problem, this study only considers the weights and due dates.

Obviously, the full problem contains 3D-packing constraints for the airplanes as well.

The planes are operated by crews, who have limited flying time. They will often fly to a base and

hand over the plane to another crew. The crew will then spend some recovery time at that base

and then continue in the next plane that arrives. Crews can also be moved on planes to other bases

if needed. The abstracted problem considered in this paper only accounts for one duty period. The

full problem expands the number of duty periods, which is modeled exactly as in the paper with

the addition of a minimum rest time between duty periods. The minimum rest time depends on the

previous flight times, e.g., 12 hours rest for 24 hours of flight, 60 hours rest for 96 hours of flight,

and 4 days rest for 14 days of flight.

Additionally, the full problem restricts the number of planes that can occupy an airfield at any

given time because of the limited availability of taxiing and parking space. This aspect of the

motivating application was studied by Lam and Van Hentenryck (2016) using a branch-and-price-

and-check approach.

The JVCRSP aims at capturing interesting elements of the motivating application surrounding the

two layers of interdependent vehicle and crew routing. The remainder of this section describes several
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classical VRPs and generalize them to the JVCRSP. Readers seeking an extensive introduction to

vehicle routing problems can consult the book by Vigo and Toth (2014).

Classical VRPs The Capacitated Vehicle Routing Problem (CVRP) is a basic problem that

requires vehicles to depart a central depot to pick up goods and then deliver them to the same

depot at the end of their routes. Each pickup, called a request, is associated with a weight, called its

load. All vehicles are identical, and each vehicle can carry requests up to a maximum total weight,

called the vehicle capacity. The goal of the CVRP is to find routes for these vehicles that pick up

all requests while minimizing the total travel distance.

The Vehicle Routing Problem with Time Windows (VRPTW) extends the CVRP with time

constraints. Every request is associated with a time frame, called its time window, within which the

request must be picked up. Vehicles can arrive at the location of a request prior to the opening of

its time window but must wait until its time window opens before commencing service.

The Vehicle Routing Problem with Pickup and Delivery and Time Windows (VRPPDTW),

also known as the Pickup and Delivery Problem with Time Windows (PDPTW), generalizes the

VRPTW. The PDPTW models pickup-delivery pairs instead of single pickup requests. Each pair is

associated with both a pickup request and a delivery request. Every pickup must be brought to its

destination during a route instead of the central depot at the end of a route. The load of a vehicle

cannot exceed its capacity at any time along its route; although making a delivery will reduce its

load and free up the capacity to pick up other requests. Since all pickups must be delivered, all

vehicles return empty to the central depot.

The JVCRSP extends the PDPTW with two major additions. First, it groups requests by location,

i.e., every request has an attribute for its location. This contrasts with traditional vehicle routing

problems, in which locations are synonymous with requests. Grouping requests by location makes it

possible to model crews interchanging vehicles because the model can recognize if two vehicles are

present at the same location.

Second, the JVCRSP adds crews to the PDPTW. Crews must travel on a vehicle when traveling

from one location to another, and are free to switch vehicles at any location. Hence, crews can

exit a location on a vehicle different to the one on which they entered. Every vehicle can carry an

unlimited number of crews onboard as passengers, and one of the crews onboard, known as the

driver, must operate the vehicle whenever it travels from one location to another.

Each crew is restricted to at most one driving segment, which is defined as the time period from

the beginning of a crew’s first drive to the end of the crew’s last drive. The driving segment is

limited to a maximum duration. During the driving segment, the crew may interchange vehicles

to drive on other vehicles and may travel as a passenger to reach a vehicle before recommencing

driving on this vehicle. The time taken for traveling as a passenger is included within the driving
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segment. Crews can travel on any vehicle to reach the location of their first drive, and crews can

travel on any vehicle back to the depot after driving. No distance or time limitations are placed on

crews before and after the driving segment.

The JVCRSP seeks to minimize a weighted sum of the number of vehicles and crews used, as

well as the total vehicle and crew travel distances.

4. High-Level Modeling Concepts

This section presents several modeling decisions underlying the constraint programming and mixed

integer programming models and concepts relevant to solving the JVCRSP.

Figure 1 illustrates an example of several vehicle routes and crew routes for a problem with three

vehicles, five crews and five locations. Every crew begins at the common crew start node (CS) and

either moves directly to the crew end node (CE), signifying that the crew is unused, or proceeds to

a vehicle start node (S1 to S3) to board a vehicle. The vehicles and crews visit the locations (L1 to

L5) to service requests and then proceed to the vehicle end nodes (E1 to E3), where the vehicles

complete their routes. The crews then disembark the vehicles and proceed to the crew end node

(CE). Observe that the yellow crew changes vehicles at L3 and then drives the blue vehicle. Also,

observe that the blue crew changes vehicles at L3, travels as a passenger on the red vehicle and

then changes vehicles at L5 to drive on the green vehicle. Because the driving segment of a crew is

defined from the moment that it starts driving to the moment that it finishes driving, the driving

segment of the blue crew is its entire route from S1 to E3.

Like in conventional vehicle routing problems, a route in the JVCRSP is a sequence of requests.

However, each request is associated with an additional input parameter that maps it to a location.

Along a route, a subsequence of requests at the same location can be thought of as a visit to the

location, with an entry at the first request in the subsequence and an exit at the last request in the

subsequence.

Figure 2 illustrates a route that visits two locations. A vehicle departs the starting node S to

service requests 1 to 3 at a location and then moves to the next location to service requests 4

to 6 before finishing at the end node E. Even though a vehicle route is a sequence of requests,

semantically, the vehicle enters the first location at request 1, departs it at request 3, enters the

second location at request 4 and departs it at request 6.

The model employs a number of crew routing constraints, which mirror the vehicle routing

constraints. Vehicles and crews are synchronized using constraints that require

• crews to move with a vehicle when moving from one location to another,

• vehicles to have exactly one driver onboard when moving from one location to another, and

• the driver of a vehicle to be one of the crews onboard.
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CS
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S2

S3

L1

L2

L3

L4

L5

E1

E2

E3

CE

Figure 1 Example of vehicle routes and crew routes. Vehicle routes are marked by solid lines and crew routes

are marked by dashed lines and dotted lines. Crews travel as passengers on dashed lines and as drivers

on dotted lines.

S 1 2 3 4 5 6 E

Figure 2 Example of locations along a vehicle route.

These requirements allow vehicles and crews to move independently within a location.

Figure 3 illustrates two crews switching vehicles at a location. The location contains requests 1

to 6. A vehicle and crew enter the location at request 1, and another vehicle and crew enter the

location at request 4. While the two vehicles are servicing requests, the first crew moves to the

departure request of the second vehicle (request 6), and the second crew moves to the departure

request of the first vehicle (request 3). The two crews wait for their new vehicles to complete

servicing the requests then leave the location. In order for this interchange to occur, both vehicles

must be at the same location at the same time. Suppose requests 1 to 3 require 10 units of time

for service, and requests 4 to 6 require 5 units of time for service. The first crew can move to the

second vehicle because the crew arrived (at time 10) before the departure of the second vehicle (at

time 75). The second crew can move to the first vehicle which waits until time 60 to depart, even

though the service for request 3 is completed at time 40.

The crew constraints described above permit many symmetrical solutions due to the numerous

subpaths that a crew can travel on within a location. The specific requests that a crew visits at a

particular location are not important; what is significant is the two vehicles that the crew uses to

arrive at and depart from the location. In other words, there are many symmetrical solutions that

differ only by the path that a crew takes within a location. These symmetries are best explained

using Figure 3. It is possible for the first crew to enter the location at request 1, visit requests 2 to

5 in order then exit on the second vehicle at request 6. However, this path is equivalent, for all

practical purposes, to one in which the crew moves directly from request 1 to request 6. Hence, the
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Figure 3 Example of two crews interchanging vehicles at a location. Vehicles are marked by solid lines and crews

are marked by dashed lines. Each node has its arrival time, start of service, end of service and departure

time labeled from top to bottom.

search space can be reduced by requiring crews to shortcut intermediate nodes within a location by

visiting at most a single entry node and a single exit node per location. This is accomplished by

ensuring that crews cannot visit a subsequence of three or more requests at the same location. This

restriction allows for vehicle interchanges without considering all the symmetric solutions that have

no impact on the objective.

The JVCRSP features a temporal element that emerges from the interdependency between vehicle

routes and crew routes. This time complexity is not present in traditional vehicle routing problems.

Consider a route in the PDPTW, as shown in Figures 4a and 4b. Figures 4c and 4d show two

different schedules for the same vehicle route. Delaying the departure times along one route does not

impact other routes nor invalidate the solution (provided that the delayed route satisfies the time

windows). The time variables in classical vehicle routing problems are used solely to enforce the

feasibility of the time windows. Solvers frequently use this knowledge to avoid branching on time

variables by fixing all time variables to their earliest possible once all routes are determined. Because

solvers only need to search on the arcs (i.e., space) variables and not the time variables, classical

vehicle routing problems are said to possess one spatial degree of freedom and zero temporal degrees

of freedom.

Figure 5 shows two crews that switch vehicles at a location. Delaying the top vehicle to depart at

time 60, instead of departing immediately after service at time 40, allows the bottom crew to move

onboard. This delay alters the departure times and can cause a cascade of events farther along this
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S

[0,100]

1

[20,40]

2

[30,70]

E

[0,100]

(a) A route consisting of two requests and the start

and end depot nodes, and their time windows for the

start of service. Every request requires 10 time units

for service, and every arc requires 10 time units of

travel time.
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[0,30]

1

[10,40]

[20,40]

[30,60]

2

[40,70]

[40,70]

[50,90]

E

[60,100]

(b) Lower and upper bounds for the arrival time

(top), service start time (middle) and departure time

(bottom) at each request along the route can be

easily computed by considering travel time and time

window constraints.

S

0

1

10

20

30

2

40

40

50

E

60

(c) Since early arrival is permitted, arrival times,

service times and departure times can be fixed to

their earliest possible once a route is determined.

S

5

1

15

25

40

2

50

55

75

E

85

(d) Delaying service or departure along a route,

although possible, is not beneficial since an amount

of time is wasted, which could be better used to

service other requests.
Figure 4 Example of two different schedules for the same route in classical vehicle routing problems without

time synchronization.

route and on other routes. For example, the delay may allow a crew to interchange vehicles at one

location but prevent a crew from interchanging vehicles at another location. Hence, searching on

the arrival and departure time variables is essential in the JVCRSP.

The JVCRSP has two spatial degrees of freedom because vehicles and crews can move indepen-

dently in space. However, the JVCRSP has only one temporal degree of freedom because the crew

time variables are tightly coupled to the vehicle time variables since the crews move with vehicles

between locations and crews have no notion of time within locations. Hence, the crew time variables

serve a similar purpose to the vehicle time variables in classical vehicle routing problems, such as

the PDPTW, in that they exist only to ensure the feasibility of the maximum driving duration

constraints.

It is the temporal degree of freedom that makes the JVCRSP difficult, especially when the

time horizon is large, because the solver must test many combinations of assignments to the time

variables to determine if crews can interchange vehicles or if they have reached the maximum

driving duration.
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(a) Consider two vehicles (solid lines) and two crews (dashed lines) that arrive at a location. Next to each

request at the location is the lower and upper bounds for its arrival time (top) and departure time (bottom).

Requests 1 to 3 require 10 units of time for service, and requests 4 to 6 require 5 units of time for service.
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(b) Setting all time variables to the earliest possible

will prohibit the bottom crew from changing to the

top vehicle because the top vehicle departs the loca-

tion (at time 40) before the arrival of the bottom

vehicle and crew (at time 60).

1

10

20

4

60

65

2

20

30

5

65

70

3

30

60

6

70

75

(c) Delaying the departure of the top vehicle to time

60 allows both the top and bottom crews to exchange

vehicles.

Figure 5 Example of the significance of branching on the time variables when vehicle routes are interdependent.

5. The Mixed Integer Programming Model

This section concretizes the high-level JVCRSP model into a mixed integer program.

The inputs and decision variables for the model are listed in Table 1. The problem is defined on

a time interval T = [0, T ], where T > 0 is the time horizon when all V ∈ {1, . . . ,∞} vehicles and

C ∈ {V, . . . ,∞} crews must have completed their routes. The vehicles and crews are represented by

the sets V = {1, . . . , V } and C = {1, . . . ,C} respectively. Each vehicle has a load capacity of Q≥ 0

and each crew has a maximum driving duration of T̄ ∈ T .

Assume that there are P ∈ {1, . . . ,∞} pickup-delivery pairs, and hence, 2P requests in total.

Define P = {1, . . . , P} and D = {P + 1, . . . ,2P} as the set of pickup nodes and delivery nodes
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Name Description

T > 0 Time horizon.
T = [0, T ] Time interval.
V ∈ {1, . . . ,∞} Number of vehicles.
V = {1, . . . , V } Set of vehicles.
Q≥ 0 Vehicle capacity.
C ∈ {V, . . . ,∞} Number of crews.
C = {1, . . . ,C} Set of crews.
T̄ ∈ T Crew maximum driving duration.
P ∈ {1, . . . ,∞} Number of pickup-delivery pairs.
P = {1, . . . , P} Set of pickup nodes.
D= {P + 1, . . . ,2P} Set of delivery nodes.
R=P ∪D Set of all requests.
sv Start node of vehicle v ∈ V.
ev End node of vehicle v ∈ V.
S = {s1, . . . , sV } Set of vehicle start nodes.
E = {e1, . . . , eV } Set of vehicle end nodes.
N =R∪S ∪E Set of all requests and vehicle start and end nodes.
screw Start node of all crews.
ecrew End node of all crews.
Av Arcs that can be traversed by vehicle v ∈ V. Defined in Equation (1).
A Arcs that can be traversed by crews. Defined in Equation (2).
L Set of locations, including one depot location.
li ∈L Location of i∈N .
ai ∈ T Earliest start of service at i∈N .
bi ∈ T Latest start of service at i∈N .
ti ∈ T Service duration of i∈N .
qi ∈ [−Q,Q] Load demand at i∈N .
di,j ∈ T Distance and travel time along the arc (i, j)∈

⋃
v∈V Av ∪A.

w1 > 0 Cost of using one vehicle.
w2 > 0 Cost of using one crew.
w3 > 0 Cost of one unit of vehicle distance.
w4 > 0 Cost of one unit of crew distance.

vehv,i,j ∈ {0,1} Indicates if vehicle v ∈ V traverses (i, j)∈Av.
arrv,i ∈ T Arrival time of vehicle v ∈ V at i∈N .
servv,i ∈ [ai, bi] Start of service by vehicle v ∈ V at i∈N .
depv,i ∈ T Departure time of vehicle v ∈ V at i∈N .
loadv,i ∈ [0,Q] Load of vehicle v ∈ V after servicing i∈N .
crewc,i,j ∈ {0,1} Indicates if crew c∈ C traverses (i, j)∈A.
crewTimec,i ∈ T Time when crew c∈ C is at i∈N .
driverc,i,j ∈ {0,1} Indicates if crew c∈ C drives on (i, j)∈A, li 6= lj .
driveStartc ∈ T Start time of driving for crew c∈ C.
driveEndc ∈ T End time of driving for crew c∈ C.
driveDurc ∈ [0, T̄ ] Driving duration of crew c∈ C.

Table 1 The data and decision variables of the mixed integer programming model.

respectively, and let R=P ∪D be the set of all request nodes. Every vehicle v ∈ V has a unique

start node sv and end node ev. These are grouped in the sets S = {s1, . . . , sV } and E = {e1, . . . , eV }.

Also, define N =R∪S ∪E to be all nodes that vehicles can visit. Finally, let screw and ecrew be the

common crew start node and end node respectively.
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Each vehicle can traverse arcs from its start node to any pickup, from any request to any other

request, from deliveries to its end node, and if the vehicle is unused, from its start node to end

node. For every vehicle v ∈ V , define this set of arcs as

Av = {(sv, i)|i∈P}∪{(i, j)|i∈R, j ∈R, i 6= j}∪ {(i, ev)|i∈D}∪{(sv, ev)}. (1)

Crews can traverse all vehicle arcs except the arcs indicating that a vehicle is unused. Additionally,

crews can traverse arcs from the crew start node to any vehicle start node, from any vehicle end

node to the crew end node, and directly from the crew start node to the crew end node. Define the

common crew arcs as

A= {(screw, i)|i∈ S}∪
⋃
v∈V

Av ∪{(i, ecrew)|i∈ E}∪ {(screw, ecrew)} \ {(sv, ev)|v ∈ V}. (2)

Define L as the set of locations, including one depot location. For every node i ∈N , let li ∈L

be its location, ai ∈ T and bi ∈ T be its earliest time and latest time to start service, ti ∈ T be its

service duration and qi ∈ [−Q,Q] be its load demand. For every arc (i, j) ∈
⋃

v∈VAv ∪A, define

di,j ∈ T as the distance and travel time along the arc. Finally, let w1 > 0 and w2 > 0 be the cost

of using one vehicle and one crew, and let w3 > 0 and w4 > 0 be the cost of one unit of distance

traveled by a vehicle and by a crew.

The primary decision variables are the usual vehicle flow variables vehv,i,j ∈ {0,1}, which indicate

whether vehicle v ∈ V traverses (i, j)∈Av. The variables arrv,i ∈ T , servv,i ∈ [ai, bi] and depv,i ∈ T

represent the arrival time, service start time and departure time of vehicle v ∈ V at node i∈N . The

loadv,i ∈ [0,Q] variable contains the load of vehicle v ∈ V after it services node i∈N .

The secondary decision variables are the crew flow variables crewc,i,j ∈ {0,1}, which indicate

whether crew c∈ C traverses (i, j)∈A. Variable crewTimec,i ∈ T stores a moment when crew c∈ C

is present at node i ∈ N . In our solutions, it will be either the arrival or the departure time at

the node (or both if they are equal). The driverc,i,j ∈ {0,1} variable indicates whether crew c∈ C

drives the vehicle that traverses (i, j)∈A if li 6= lj. The start and end time of the driving segment

of crew c ∈ C is given by driveStartc ∈ T and driveEndc ∈ T , and the total driving duration by

driveDurc ∈ [0, T̄ ].

The constraints of the mixed integer programming model are separated into a vehicle component

and a crew component. The vehicle component, depicted in Figure 6, is the standard three-index

flow model of the PDPTW with the addition of arrival and departure time variables and the

duplication of the start and end node for each vehicle. Constraints (3) to (5) are the usual flow

constraints, which ensure that each vehicle follows a path from its start node to its end node.

Constraint (6) is the request cover constraint, which requires every (pickup) request to be visited.
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∑
j:(sv ,j)∈Av

vehv,sv ,j = 1 ∀v ∈ V, (3)∑
h:(h,i)∈Av

vehv,h,i =
∑

j:(i,j)∈Av

vehv,i,j ∀v ∈ V, i∈R, (4)∑
h:(h,ev)∈Av

vehv,h,ev = 1 ∀v ∈ V, (5)∑
v∈V

∑
h:(h,i)∈Av

vehv,h,i = 1 ∀i∈P, (6)∑
h:(h,i)∈Av

vehv,h,i =
∑

h:(h,P+i)∈Av

vehv,h,P+i ∀v ∈ V, i∈P, (7)

depv,i + di,P+i ≤ arrv,P+i ∀v ∈ V, i∈P, (8)

arrv,i ≤ servv,i ∀v ∈ V, i∈R, (9)

servv,i + ti ≤ depv,i ∀v ∈ V, i∈R, (10)

arrv,i = servv,i = depv,i ∀v ∈ V, i∈ S ∪E , (11)

depv,i + di,j − arrv,j ≤M1 (1− vehv,i,j) ∀v ∈ V, (i, j)∈Av, (12)

arrv,j −depv,i− di,j ≤M2 (1− vehv,i,j) ∀v ∈ V, (i, j)∈Av, (13)

loadv,i = 0 ∀v ∈ V, i∈ S ∪E , (14)

qi ≤ loadv,i ≤Q ∀v ∈ V, i∈P, (15)

0≤ loadv,i ≤Q+ qi ∀v ∈ V, i∈D, (16)

loadv,i + qj − loadv,j ≤M3 (1− vehv,i,j) ∀v ∈ V, (i, j)∈Av, (17)∑
h:(h,i)∈Av

vehv,h,i ≤ 1 ∀v ∈ V, i∈R, (18)

vehv,sv ,ev ≤ vehv+1,sv+1,ev+1
∀v ∈ {1, . . . , V − 1}. (19)

Figure 6 The vehicle component of the mixed integer programming model.

Constraints (7) and (8) are the pickup-delivery constraints, which ensure that delivery requests are

serviced by the same vehicle that serviced their associated pickup request and are serviced after

the associated pickup request. Constraints (9) and (10) order the arrival, service and departure

times at each request. Constraint (11) constrains each start node and end node to one common

arrival/service/departure time. Constraints (12) and (13) are the travel time constraints, which

linearize the constraint

vehv,i,j = 1→ depv,i + di,j = arrv,j ∀v ∈ V, (i, j)∈Av.
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∑
j:(screw,j)∈A

crewc,screw,j = 1 ∀c∈ C, (20)∑
h:(h,i)∈A

crewc,h,i =
∑

j:(i,j)∈A

crewc,i,j ∀c∈ C, i∈N , (21)∑
h:(h,ecrew)∈A

crewc,h,ecrew = 1 ∀c∈ C, (22)

crewc,i,j ≤
∑

v∈V:(i,j)∈Av

vehv,i,j ∀c∈ C, (i, j)∈A, li 6= lj, (23)∑
v∈V:(i,j)∈Av

vehv,i,j =
∑
c∈C

driverc,i,j ∀(i, j)∈A, li 6= lj, (24)

driverc,i,j ≤ crewc,i,j ∀c∈ C, (i, j)∈A, li 6= lj, (25)

crewTimec,i + di,j − crewTimec,j ≤M4 (1− crewc,i,j) ∀c∈ C, (i, j)∈A, (26)

arrv,i ≤ crewTimec,i ≤ depv,i ∀v ∈ V, c∈ C, i∈N , (27)

driveStartc− crewTimec,i ≤M5

1−
∑

j:(i,j)∈A

driverc,i,j

 ∀c∈ C, i∈R∪S, (28)

crewTimec,i−driveEndc ≤M6

1−
∑

h:(h,i)∈A

driverc,h,i

 ∀c∈ C, i∈R∪E , (29)

driveDurc = driveEndc−driveStartc ∀c∈ C, (30)∑
h:(h,i)∈A

crewc,h,i ≤ 1 ∀c∈ C, i∈N , (31)

crewc,screw,ecrew ≤ crewc+1,screw,ecrew ∀c∈ {1, . . . ,C − 1}, (32)

crewc,i,j + crewc,j,k ≤ 1 ∀c∈ C, (i, j, k) : (i, j)∈A, (j, k)∈A, li = lj = lk, (33)∑
(i,j)∈A:i,j∈S

crewc,i,j ≤ |S| − 1 ∀c∈ C, S ⊆N . (34)

Figure 7 The crew component of the mixed integer programming model.

Constraints (14) to (16) bound the vehicle load after service of a request. Vehicle loads along a

route are accumulated by Constraint (17). Constraint (18) is a redundant constraint that prunes

the search space by allowing each vehicle to visit a request at most once. Constraint (19) is a

redundant constraint that breaks symmetry between vehicles by forcing a vehicle to be unused if a

lower-numbered vehicle is unused. M1 to M3 are big-M constants.

The crew component, depicted in Figure 7, overlays the vehicle component with crew constraints

to obtain the JVCRSP. It contains routing constraints similar to those in the vehicle component but

also includes synchronization constraints to couple the vehicles and crews. Constraints (20) to (22)

are the crew flow constraints, which ensure that all crews follow a path beginning at the crew start
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node through to the crew end node. Constraints (23) and (24) are space synchronization constraints

that require crews to move with a vehicle and vehicles to move with a driver onboard when moving

from one location to another. Constraint (25) is another space synchronization constraint that

restricts the driver along an arc to be one of the crews that traverses the arc. Constraint (26) is the

crew travel time constraint. Constraint (27) is a time synchronization constraint that allows crews

to be at a node only while a vehicle is present. Having bounds on the crew time variables, rather

than strict equality, is essential to modeling vehicle interchange because it enables crews to both

move off a vehicle when it arrives at a location and move on a vehicle when it departs a location.

In an equality constraint, crews must either always move off a vehicle at arrival or at departure,

which disallow some interchanges. Constraints (28) and (29) determine the start and end of driving

of each crew. Constraint (28) is a linearization of the constraint

∑
j:(i,j)∈A

driverc,i,j = 1→ driveStartc ≤ crewTimec,i ∀c∈ C, i∈R∪S,

which imposes that, if a driver departs the node i, the driver must have already started driving

before or at the departure time at i. Similarly, Constraint (29) states that if a crew drives to node

i, the end of driving of the crew must be later than or at the arrival time of i. Constraint (30)

calculates the driving duration of each crew. Constraints (31) and (32) are redundant constraints

and are equivalent to Constraints (18) and (19). Constraint (33) prevents crews from visiting

subsequences of three or more requests at the same location, as explained in Section 4. M4 to M6

are big-M constants.

When a crew travels between two requests i and j within a location, the distance and travel time

is zero (di,j = 0), and hence, Constraint (26) fails to perform subtour elimination. There are two

possible remedies. The first option replaces di,j in Constraint (26) with a new crew travel time cost

that has a positive value when traveling between two requests within a location. This value can

be interpreted as the time required for a crew to switch vehicles. The alternative option is to use

the subtour elimination constraints specified by Constraint (34). Our algorithm uses the second

approach but adds these constraints lazily in a branch-and-cut scheme.

Objective Function (35) minimizes a weighted sum of the number of vehicles and crews used and

the total vehicle and crew travel distances.

minw1

∑
v∈V

∑
j∈P

vehv,sv ,j +w2

∑
c∈C

∑
j∈S

crewc,screw,j +

w3

∑
v∈V

∑
(i,j)∈Av

di,jvehv,i,j +w4

∑
c∈C

∑
(i,j)∈A

di,jcrewc,i,j.
(35)
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6. The Constraint Programming Model

This section discusses the constraint programming formulation of the high-level model of the

JVCRSP.

The inputs and decision variables of the constraint programming model are listed in Table 2. The

definitions of many of the variables are identical to those in the mixed integer programming model

but differ in that some sets are discrete instead of continuous. The problem is defined on a discrete

time interval T = {0, . . . , T}, where T ∈ {1, . . . ,∞} is the time horizon. Let V ∈ {1, . . . ,∞} be the

number of vehicles, and Q∈ {0, . . . ,∞} be the load capacity of each vehicle. Let C ∈ {V, . . . ,∞} be

the number of crews, and T̄ ∈ T be the maximum driving duration. The vehicles and crews are

represented by the sets V = {1, . . . , V } and C = {1, . . . ,C} respectively. The set C0 = C ∪{0} extends

the set of crews with a dummy value 0 that indicates no crew.

The problem has P ∈ {1, . . . ,∞} pickup-delivery pairs, giving a total of R = 2P requests. Define

P = {1, . . . , P} and D= {P + 1, . . . ,R} as the set of pickups and deliveries respectively, and group

them in the set R = P ∪ D. For every vehicle v ∈ V, define its unique start and end node as

s(v) = R+ v and e(v) = R+V + v. The start and end nodes are grouped in S = {R+ 1, . . . ,R+V }

and E = {R+V + 1, . . . ,R+ 2V }. Let N =R∪S ∪E be the set of all nodes, and N0 =N ∪{0} be

the set of all nodes plus the combined crew start and end depot node 0.

Define L as the set of locations, including one depot location. For every node i∈N , define l(i)∈L

as its location, a(i)∈ T and b(i)∈ T as the opening and closing of its time window, t(i)∈ {1, . . . ,∞}

as its service duration, and q(i)∈ {−Q, . . . ,Q} as its load demand. Let d(i, j)∈ T be the distance

and travel time from i∈N to j ∈N .

Let w1 ∈ {1, . . . ,∞} and w2 ∈ {1, . . . ,∞} be the cost of using one vehicle and one crew, and let

w3 ∈ {1, . . . ,∞} and w4 ∈ {1, . . . ,∞} be the cost of one unit of distance traveled by a vehicle and

by a crew.

The primary decision variables are the vehicle successor variables. Successor variables are frequently

seen in constraint programming models of vehicle routing problems (e.g., Kilby, Prosser, and Shaw

2000, Rousseau, Gendreau, and Pesant 2002) and serve the same purpose as the flow variables

in the mixed integer programming model. For every node i ∈N , succ(i) ∈N denotes the direct

successor of i on its route. For example, if succ(i) = j, then the arc (i, j) is used. The successor of a

vehicle’s end node is the start node of the following vehicle, and the successor of the last vehicle’s

end node is the start node of the first vehicle. The time and load resources are accumulated along a

route and then reset at an end node prior to the start of the next route. Under this modeling, the

successor variables describe a Hamiltonian cycle. Figure 8 shows an example of the Hamiltonian

cycle formed by four vehicle routes. This modeling was developed by Christofides and Eilon (1969)

and subsequently called the giant tour representation (e.g., Irnich 2008).



Author: Article Short Title
18 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

Name Description

T ∈ {1, . . . ,∞} Time horizon.
T = {0, . . . , T} Time interval.
V ∈ {1, . . . ,∞} Number of vehicles.
V = {1, . . . , V } Set of vehicles.
Q∈ {0, . . . ,∞} Vehicle capacity.
C ∈ {V, . . . ,∞} Number of crews.
C = {1, . . . ,C} Set of crews.
C0 = C ∪ {0} Set of crews, including a 0 value indicating no crew.
T̄ ∈ T Maximum driving duration of a crew.
P ∈ {1, . . . ,∞} Number of pickup-delivery pairs.
R = 2P Number of requests.
P = {1, . . . , P} Set of pickup nodes.
D= {P + 1, . . . ,R} Set of delivery nodes.
R=P ∪D Set of all requests.
s(v) = R+ v Start node of vehicle v ∈ V.
e(v) = R+V + v End node of vehicle v ∈ V.
S = {R+ 1, . . . ,R+V } Set of vehicle start nodes.
E = {R+V + 1, . . . ,R+ 2V } Set of vehicle end nodes.
N =R∪S ∪E Set of all requests and vehicle start and end nodes.
N0 =N ∪{0} Set of all nodes, including the crew depot node 0.
L Set of locations, including one depot location.
l(i)∈L Location of i∈N .
a(i)∈ T Earliest start of service at i∈N .
b(i)∈ T Latest start of service at i∈N .
t(i)∈ {1, . . . ,∞} Service duration of i∈N .
q(i)∈ {−Q, . . . ,Q} Load demand at i∈N .
d(i, j)∈ T Distance and travel time from i∈N to j ∈N .
w1 ∈ {1, . . . ,∞} Cost of using one vehicle.
w2 ∈ {1, . . . ,∞} Cost of using one crew.
w3 ∈ {1, . . . ,∞} Cost of one unit of vehicle distance.
w4 ∈ {1, . . . ,∞} Cost of one unit of crew distance.

succ(i)∈N Successor of i∈N .
veh(i)∈ V Vehicle that visits i∈N .
arr(i)∈ T Arrival time at i∈N .
serv(i)∈ {a(i), . . . , b(i)} Start of service at i∈N .
dep(i)∈ T Departure time at i∈N .
load(i)∈ {0, . . . ,Q} Load of vehicle veh(i) after servicing i∈N .
vehUsed(v)∈ {0,1} Indicates if vehicle v ∈ V is used.
crewSucc(c, i)∈N0 Successor of i∈N0 for crew c∈ C0.
crewTime(i)∈ T Time when all crews that visit i∈N is present at i.
crewUsed(c)∈ {0,1} Indicates if crew c∈ C is used.
crewDist(c)∈ {0, . . . ,∞} Distance traveled by crew c∈ C.
driver(i)∈ C0 Driver of vehicle veh(i) from i∈R∪S to succ(i), with the

value 0 indicating no driver.
driveStart(c)∈ T Start time of driving for crew c∈ C0.
driveEnd(c)∈ T End time of driving for crew c∈ C0.
driveDur(c)∈ {0, . . . , T̄} Driving duration of crew c∈ C.

Table 2 The data and decision variables of the constraint programming model.
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S1 E1 S2 E2

S3E3S4E4

Figure 8 Example of four vehicle routes as modeled by successor variables. The S nodes and E nodes respectively

are the start nodes and end nodes of the four vehicles.

Since the successor variables are not indexed by vehicle, the model uses the veh(i)∈ V variable

to store the vehicle that visits node i ∈N . This modeling, which uses only two vectors, is more

succinct than the three-dimensional flow variables found in the mixed integer programming model.

Variables arr(i)∈ T , serv(i)∈ {a(i), . . . , b(i)} and dep(i)∈ T represent the arrival time, service

start time and departure time at node i ∈ N . The load after servicing node i ∈ N is stored in

load(i)∈ {0, . . . ,Q}. Variable vehUsed(v)∈ {0,1} indicates whether vehicle v ∈ V is used.

There is a significant difference between vehicles and crews in terms of routing. For vehicles,

every request is visited exactly once, which allows the use of a single set of successor variables. In

contrast, multiple crews can be on a vehicle when it visits a node, and hence, it is not possible to

associate a single crew successor variable with every node. Instead, the model needs a crew successor

variable for every crew and every node. However, for any given crew, its successor variables do

not need to cover all requests. The crew successor variables are a matrix crewSucc(c, i)∈N0 that

stores the immediate successor of node i ∈N0 for crew c ∈ C0. If crew c does not visit a node i,

then crewSucc(c, i) = i. The crewTime(i)∈ T variable stores a moment when every crew that visits

i∈N is present at i. For every crew c∈ C, variable crewUsed(c)∈ {0,1} indicates whether the crew

is used, and crewDist(c)∈ {0, . . . ,∞} stores the distance traveled by the crew.

Every node i∈R∪S has an associated driver(i)∈ C0 variable that either denotes the driver of

vehicle veh(i) if the vehicle travels from i to its successor succ(i) at a different location, or takes the

value 0, indicating that no driver is necessary, if the successor is at the same location. The variables

driveStart(c)∈ T and driveEnd(c)∈ T store the start and end time of driving of crew c∈ C0, and

driveDur(c)∈ {0, . . . , T̄} stores the total driving duration of crew c∈ C.

Like the mixed integer programming model, the constraints of the constraint programming model

are also divided into a vehicle component and a crew component. The vehicle component, depicted

in Figure 9, models a PDPTW. Constraints (36) to (38) restrict the possible values of the successor

variables. Constraint (36) states that a vehicle can only move from its start node to any pickup

node or its end node. Constraint (37) states that a vehicle can move from a pickup node to any

pickup or delivery node, and Constraint (38) states that a vehicle can move from a delivery node
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to any pickup, delivery or end node. Constraints (39) and (40) join the end nodes to the start

nodes. Using the giant tour modeling, the Circuit global constraint from Constraint (41) performs

subtour elimination by imposing a Hamiltonian cycle through the succ(·) variables. Constraints (42)

and (43) allow only the associated vehicle to visit the start nodes and end nodes. Constraint (43)

is needed to prevent vehicles from visiting the end node of other vehicles, which is permitted

by Constraint (38). Constraint (44) tracks vehicles along their routes. Constraints (45) and (46)

are the pickup and delivery constraints. Constraints (47) and (48) order the arrival, service and

departure times at each request. Constraint (49) restricts each start and end node to one common

arrival/service/departure time. Constraint (50) enforces travel times. Constraints (51) to (53) bound

the vehicle loads. Constraint (54) is the load constraint. Constraints (55) and (56) state that a

vehicle is used if and only if it does not travel from its start node to its end node or if it visits

any request. Since they are equivalences, only one of these constraints is necessary but, in practice,

stating the two constraints achieves stronger propagation. Constraint (57) breaks vehicle symmetry

in a manner similar to Constraint (19).

The crew component, depicted in Figure 10, overlays the vehicle component with crew decisions.

Constraints (58) to (62) are the domain restrictions. Constraint (58) requires crews to either leave

the crew depot node for a vehicle start node or remain at the crew depot node. Constraints (59)

to (61) are similar to Constraints (36) to (38) with the exception that the successor of a node is

itself if it is not visited. Constraint (62) states that a crew either moves from a vehicle end node to

the crew depot node or the crew does not visit the end node. The Subcircuit global constraint of

Constraint (63) enforces connectivity and eliminates subtours (Francis and Stuckey 2014). It differs

from the Circuit constraint seen in the vehicle component by allowing some nodes to be excluded

from the Hamiltonian cycle.

Constraint (64) states that vehicles have no driver when moving within a location. Constraint (65)

requires drivers to move with their vehicles. Constraint (66) requires crews to either move to another

node at their current location or move with a vehicle (to a different location). The CrewShortcut

global constraint in Constraint (67) removes crew subsequence symmetries within locations, and

is detailed in Section 6.1. Constraint (68) allows crews to be at a node only while a vehicle is

present. Constraint (69) forces crews to move forward in time only. Constraint (70) states that the

driver on the arc (i, succ(i)) starts driving at or before departing i. Similarly, Constraint (71) states

that the driver on the arc (i, succ(i)) ends driving at or after arriving at succ(i). Constraint (72)

calculates the total driving duration of each crew. Constraints (73) and (74) state that a crew is

used if and only if it visits at least one node or if it drives along any arc. Constraint (75) is a

symmetry-breaking constraint. Constraint (76) is a global optimization constraint, described in

Section 6.2, that bounds crew distances and checks whether crews can return to the depot.
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succ(s(v))∈P ∪{e(v)} ∀v ∈ V, (36)

succ(i)∈P ∪D ∀i∈P, (37)

succ(i)∈P ∪D∪E ∀i∈D, (38)

succ(e(v)) = s(v + 1) ∀v ∈ {1, . . . , V − 1}, (39)

succ(e(V )) = s(1), (40)

Circuit(succ(·)), (41)

veh(s(v)) = v ∀v ∈ V, (42)

veh(e(v)) = v ∀v ∈ V, (43)

veh(succ(i)) = veh(i) ∀i∈R∪S, (44)

veh(i) = veh(P + i) ∀i∈P, (45)

dep(i) + d(i,P + i)≤ arr(P + i) ∀i∈P, (46)

arr(i)≤ serv(i) ∀i∈R, (47)

serv(i) + t(i)≤ dep(i) ∀i∈R, (48)

arr(i) = serv(i) = dep(i) ∀i∈ S ∪E , (49)

dep(i) + d(i, succ(i)) = arr(succ(i)) ∀i∈R∪S, (50)

load(i) = 0 ∀i∈ S ∪E , (51)

q(i)≤ load(i)≤Q ∀i∈P, (52)

0≤ load(i)≤Q+ q(i) ∀i∈D, (53)

load(i) + q(succ(i)) = load(succ(i)) ∀i∈R∪S, (54)

vehUsed(v)↔ succ(s(v)) 6= e(v) ∀v ∈ V, (55)

vehUsed(v)↔
∨
i∈R

veh(i) = v ∀v ∈ V, (56)

vehUsed(v)≥ vehUsed(v + 1) ∀v ∈ {1, . . . , V − 1}. (57)

Figure 9 The vehicle component of the constraint programming model.

Objective Function (77) minimizes a weighted sum of the vehicle and crew counts and the total

vehicle and crew travel distances.

minw1

∑
v∈V

vehUsed(v) +w2

∑
c∈C

crewUsed(c) +w3

∑
i∈R∪S

d(i, succ(i)) +w4

∑
c∈C

crewDist(c). (77)
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crewSucc(c,0)∈ S ∪{0} ∀c∈ C, (58)

crewSucc(c, i)∈P ∪{i} ∀c∈ C, i∈ S, (59)

crewSucc(c, i)∈P ∪D ∀c∈ C, i∈P, (60)

crewSucc(c, i)∈P ∪D∪E ∀c∈ C, i∈D, (61)

crewSucc(c, i)∈ {0, i} ∀c∈ C, i∈ E , (62)

Subcircuit(crewSucc(c, ·)) ∀c∈ C, (63)

l(succ(i)) = l(i)↔ driver(i) = 0 ∀i∈R∪S, (64)

crewSucc(driver(i), i) = succ(i) ∀i∈R∪S, (65)

l(crewSucc(c, i)) = l(i)∨ crewSucc(c, i) = succ(i) ∀c∈ C, i∈R∪S, (66)

CrewShortcut(succ(·), crewSucc(·, ·),arr(·),dep(·),C,R,S,E , l(·)), (67)

arr(i)≤ crewTime(i)≤ dep(i) ∀i∈N , (68)

crewTime(i)≤ crewTime(crewSucc(c, i)) ∀c∈ C, i∈R∪S, (69)

driveStart(driver(i))≤ dep(i) ∀i∈R∪S, (70)

driveEnd(driver(i))≥ arr(succ(i)) ∀i∈R∪S, (71)

driveDur(c) = driveEnd(c)−driveStart(c) ∀c∈ C, (72)

crewUsed(c)↔
∨
i∈N0

crewSucc(c, i) 6= i ∀c∈ C, (73)

crewUsed(c)↔
∨

i∈R∪S

driver(i) = c ∀c∈ C, (74)

crewUsed(c)≥ crewUsed(c+ 1) ∀c∈ {1, . . . ,C − 1}, (75)

CrewBound(crewDist(c), crewSucc(c, ·), crewTime(·),R,S,E , d(·, ·)) ∀c∈ C. (76)

Figure 10 The crew component of the constraint programming model.

6.1. Breaking Crew Subpath Symmetries within Locations

The CrewShortcut global constraint of Constraint (67) removes symmetric subsequences of

requests within locations, which are previously explained in Section 4. Define pred(i)∈N as the

vehicle predecessor of the node i∈N , and crewPred(c, i)∈N0 as the predecessor of i∈N0 for crew

c∈ C0. CrewShortcut implements the following two propagation rules:

l(pred(i)) = l(i) = l(succ(i))↔
∧
c∈C

crewSucc(c, i) = i ∀i∈R, (78)

l(i) = l(crewSucc(c, i))∧ crewSucc(c, i) 6= i→
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Figure 11 Example of a partial crew route obtained at an early stage of the search. The S and E nodes are

the start node and end node respectively. Solid arrows represent crew assignments and dotted arrows

represent possible crew assignments.

l(i) 6= l(crewSucc(c, crewSucc(c, i)))∧ l(i) 6= l(crewPred(c, i)) ∀c∈ C, i∈R. (79)

Rule (78) states that if a vehicle visits a sequence of three requests at the same location, then

crews cannot visit the second request of the sequence. Rule (79) states that if a crew visits a node i

and then another node at the same location, then the crew cannot visit a third node at the same

location and the crew must reach i from a different location.

6.2. Feasibility and Bounding of Crew Routes

The constraint programming model presented so far has fewer variables than the mixed integer

programming model and prunes infeasible solutions effectively. However, removing infeasible arcs

by pruning values from the domains of successor variables may have little or no impact on the

lower bound of the objective value. This limitation of constraint programming can be addressed

using global optimization constraints (Focacci, Lodi, and Milano 1999, 2000, 2002, 2004). A

global optimization constraint wraps a relaxation within a global constraint, giving a constraint

programming model tighter lower bounds. This section presents a global optimization constraint that

checks the feasibility of the crew partial routes and computes lower bounds to the crew objectives.

The search procedure of the constraint programming model branches on the vehicle successor

variables before the crew successor variables. This means that, while searching for vehicle routes,

the domains of the crew successor variables are large, leading to weak lower bounds to the crew

distance terms in the objective function. For example, Figure 11 shows a partial crew route found

in an early stage of the search when the focus is on vehicle routes. The crew is allocated to traverse

the arcs (1,2) and (3,4), but it is not yet known if a path from the start node S to the end node E

via these two arcs exists, and how long this path is if it exists.

A global optimization constraint is used to determine whether each crew has a feasible route and

to compute lower bounds to the crew distance. Such a constraint needs to find, for every crew, a
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min
∑

(i,j)∈B

d(i, j)xi,j (80)

subject to

min(cDist)≤
∑

(i,j)∈B

d(i, j)xi,j ≤max(cDist), (81)∑
(i,j)∈B:i∈S

xi,j = 1, (82)∑
h:(h,i)∈B

xh,i =
∑

j:(i,j)∈B

xi,j ∀i∈R, (83)∑
(h,i)∈B:i∈E

xh,i = 1, (84)∑
j:(i,j)∈B

xi,j ≤ 1 ∀i∈R∪S, (85)

ti + d(i, j)− tj ≤M(1−xi,j) ∀(i, j)∈B, (86)

xi,j ∈ [0,1] ∀(i, j)∈B, (87)

ti ∈ [min(cTime(i)),max(cTime(i))] ∀i∈N . (88)

Figure 12 The linear relaxation of the shortest path problem in the CrewBound optimization constraint.

shortest path from a start node to an end node that includes all arcs known to be traversed by the

crew. Since this problem is NP-hard (Laporte, Mercure, and Norbert 1984, Ibaraki 1973, Dreyfus

1969, Volgenant and Jonker 1987), the CrewBound constraint, presented below, uses its linear

relaxation.

Whenever a crewSucc(c, ·) variable is fixed, the CrewBound constraint solves the linear program

defined in Figure 12 for the crew c∈ C. The inputs to this linear program include four sets extracted

from the current domains of the variables in the main constraint programming model. Let the D(·)
function denote the current domain of a variable, then the four input sets are

• cSucc(i) =D(crewSucc(c, i)) for i∈R∪S,

• cTime(i) =D(crewTime(i)) for i∈N ,

• cDist =D(crewDist(c)), and

• B= {(i, j)|i∈R∪S, j ∈ cSucc(i), i 6= j}, which represents the current set of arcs that can be

traversed by the crew.

The xi,j variable indicates whether the crew traverses arc (i, j)∈B, and the ti variable stores the

arrival time to node i.

Objective Function (80) minimizes the total distance. Constraint (81) bounds the objective value

using information from the current domains of the variables in the main constraint programming
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Algorithm 1: Sketch of the procedure that assigns vehicle routes.

1 for all v ∈ V
2 i← s(v)

3 while i 6= e(v)
4 try all j ∈D(succ(i)) ordered by min(l(i) 6= l(j),min(D(ser(j))))
5 succ(i)← j

6 i← succ(i)

model. Constraints (82) to (84) are the flow constraints, which ensure the existence of a path from

a start node to an end node. Constraint (85) is a redundant constraint that strengthens the linear

program. Constraint (86) is the time-based subtour elimination constraint, where M is a big-M

constant. When d(i, j) = 0, this constraint fails to perform subtour elimination; however, the linear

program remains a valid relaxation of the shortest path problem. Constraints (87) and (88) restrict

the domains of the xi,j and ti variables respectively.

The CrewBound constraint performs three tasks. First, it checks feasibility, i.e., the existence

of a route for the crew that satisfies all constraints. Second, it constrains the lower bound of

crewDist(c) to be greater than the objective value of the linear program. Third, it prunes the search

space using the reduced costs at optimality. For every arc (i, j)∈B, it prunes j from the domain of

crewSucc(c, i) if

min(cDist) + x̄i,j >max(cDist),

where x̄i,j is the reduced cost of xi,j.

6.3. The Search Procedures

The search procedure first assigns vehicle routes and then crew routes. Once all routes are assigned,

it assigns values to the time variables.

Vehicle routes are assigned according to Algorithm 1. The procedure considers each vehicle in

turn (Line 1) and labels the successor variables from its start node (Line 2) to its end node (Line 3).

To choose successors, the algorithm assigns nodes to successor variables using a heuristic that

lexicographically prefers nodes at the same location and then nodes with earlier service start times

(Line 4). Line 5 makes the assignment, and Line 6 advances to the chosen successor node. The try

all instruction defines a branching decision.

Crew routes assigned using Algorithm 2. The intuition behind the algorithm is to start with a

node i that has no assigned driver, assign a driver c to this node, and then complete the route of

this crew. In assigning the route of crew c, preference is given to assigning the crew to drive as

much as possible. More precisely, the search procedure begins by ordering all nodes i∈R∪S that

have an unassigned driver(i) variable by earliest departure time (Line 2). The search procedure
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Algorithm 2: Sketch of the procedure that assigns drivers and crew routes.

1 initialize list startDrive of tuples

2 for all i∈R∪S such that |D(driver(i))|> 1 ordered by min(D(dep(i)))
3 c←min(D(driver(i)))

4 driver(i)← c

5 startDrive.append(c, i)

6 while i /∈ E
7 try all j ∈D(crewSucc(c, i)) ordered by max(c∈D(driver(i))∧ j ∈D(succ(i)), rand())
8 crewSucc(c, i)← j

9 try driver(i)← c

10 i← crewSucc(c, i)

11 for all i∈R∪S such that c∈D(driver(i))∧ |D(driver(i))|> 1
12 driver(i) 6= c

13 for all (c, i)∈ startDrive
14 while i /∈ S
15 try all h∈N such that i∈D(crewSucc(c,h))
16 crewSucc(c,h)← i

17 i← h

then selects the first of these nodes and assigns it a driver (Line 4). Only a single driver (here, the

one with smallest index) must be considered at this point because all crews are identical (Line 3).

For this driving crew, the search procedure constructs a path covering the vehicle routes from the

node to the depot (Line 6). It simultaneously labels the crew successor variables from the node to

any vehicle end node (Line 8) and the driver variables until the crew exceeds its maximum driving

duration (Line 9). Note that the try instruction in Line 9 tries to assign crew c as the driver at

node i. If this is not possible, the instruction has no effect. The value selection heuristic for crew

successor variables favors the node that is visited next by the current vehicle of the crew, provided

that the crew can drive from this node; otherwise, the successor is chosen randomly. Once the crew

reaches an end node, it is disallowed from driving at any other node (Lines 11 and 12). This process

is repeated until all driver(·) variables are fixed. The search procedure then completes the crew

routes by labeling the crew successor variables from the first drive node of each crew back to any

vehicle start node (Lines 13 to 17).

Algorithm 3 shows the procedure that assigns vehicle schedules and crew schedules. This procedure

is best explained using Figure 2. The search procedure selects a vehicle route and divides it into

segments consisting of requests at the same location. These segments correspond to requests 1 to 3

and requests 4 to 6 in the example. The search procedure then labels the departure time variable at

the exit request in each segment (i.e., requests 3 and 6). It only needs to branch on the departure

time variables at these requests because the arrival time at the entry requests (i.e., requests 1 and



Author: Article Short Title
Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 27

Algorithm 3: Sketch of the procedure that assigns vehicle and crew schedules.

1 for all v ∈ V ordered by min(D(dep(s(v))))
2 i← s(v)

3 while i /∈ E
4 while l(i) = l(succ(i))
5 dep(i)←min(D(dep(i)))

6 ser(i)←min(D(ser(i)))

7 i← succ(i)

8 try all t∈D(dep(i))
9 dep(i)← t

10 ser(i)←min(D(ser(i)))

11 i← succ(i)

12 for all c∈ C
13 i← crewSucc(c,0)

14 while i 6= 0
15 crewTime(i)←min(D(crewTime(i)))

16 i← crewSucc(c, i)

4) are specified by the travel time constraints, and all three time variables at the intermediate

nodes (i.e., requests 2 and 5) are bounded by the arrival time at entry requests and the departure

time at the exit requests. Once the arrival and departure time of each segment is known, the search

procedure simply fixes the time variables at intermediate nodes to their earliest possible. This is

always feasible since the travel time and service time constraints already bound the time variables

at intermediate requests during the construction of the routes. Crew schedules are simply fixed to

their earliest possible since they are tied to the vehicle schedules.

Note that branching on the departure times is essential because of the constraint that limits

the maximum driving duration. This constraint is a simple subtraction and propagates extremely

weakly unless its variables are fixed.

7. The Large Neighborhood Search

A large neighborhood search is also applied to the mixed integer programming and constraint

programming models. Large neighborhood search aims to iteratively find a sequence of improving

solutions by destroying parts of a solution and reconstructing it using an underlying solution method.

In particular, large neighborhood search uses a neighborhood to fix a number of variables to their

values in the incumbent solution and then calls the underlying solver to determine values for the

remaining relaxed variables. The solver is given a limited run time since large neighborhood search

is an incomplete method and no proof of optimality is available. The large neighborhood search
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is applied to both the mixed integer programming and constraint programming models with the

following four neighborhoods:

• Vehicle Route Neighborhood: This neighborhood fixes a number of vehicle routes and destroys

all other vehicle routes and all existing crew routes. This neighborhood destroys large portions

of an existing solution, and hence, has the potential to explore diverse parts of the search space.

However, the neighborhood is difficult to explore exhaustively because of its size. Because of this,

this neighborhood performs better early in optimization and has difficulty improving the solutions

near optimality.

• Request Neighborhood: This neighborhood relaxes several pickup-delivery pairs and all crew

routes. The relaxed requests are then inserted into existing routes. This neighborhood complements

the vehicle route neighborhood since it attempts to obtain incremental improvement to an existing

solution by destroying small portions of the solution. This neighborhood performs better than the

vehicle routing neighborhood later in the solution process because it is significantly smaller and can

be explored more exhaustively.

• Crew Route Neighborhood: This neighborhood fixes all vehicle routes and relaxes a number of

crew routes. It aims to improve the crew objectives using the same reasoning as for the Vehicle

Route Neighborhood.

• Crew Passenger Neighborhood: This neighborhood fixes all vehicle routes and the driving

segments of all crews, and relaxes the passenger segments before and after the driving segment of

each crew. This neighborhood attempts to obtain minor improvement to an existing solution by

optimizing the pre-driving and post-driving passenger segments of crews. These two segments are

only loosely coupled to the vehicles, whereas the driving segment of each crew is tightly coupled to

the vehicles. This means that there is more opportunity to optimize these two segments.

8. Experimental Results

This section describes the experiments and analyzes the results. The full tables are given in the

online appendix.

8.1. The Instances

The instances are generated to capture the essence of applications in humanitarian and military

logistics. These problems typically feature fewer locations than traditional vehicle routing applica-

tions but comprise multiple requests at each location. First, five sets of seven locations and five

sets of eleven locations are generated on a 50× 50 Euclidean grid. Next, 5, 10, 20, 30, 40 and 50

pickup-delivery pairs are generated and assigned to the locations. The instances are then duplicated

using three different cost functions:

• w1 = 1000, w2 = 1000, w3 = 1, w4 = 1,
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• w1 = 1000, w2 = 5000, w3 = 1, w4 = 1, and

• w1 = 5000, w2 = 1000, w3 = 1, w4 = 1.

In total, there are 10× 6× 3 = 180 instances. Service durations vary between 1 and 20, and load

demands vary between 1 and 15. The time windows of requests are randomly chosen.

8.2. The Methods

Both the mixed integer programming and constraint programming models are solved in two stages.

First, the vehicle component is solved to produce an initial set of feasible vehicle routes. Then the

full model, consisting of the vehicle and crew components, is started using these vehicle routes. If

the vehicle routing stage is unable to find a feasible solution, the main model is started with a

solution consisting of one pickup-delivery pair per vehicle.

Additionally, the full model is solved with (1) the vehicle route variables fixed according to the

initial solution, and (2) the vehicle route variables fixed according to the initial solution and the

vehicle time variables fixed to their earliest possible. These two models are respectively named

Fixed and Semi-flexible. The original model with both variable vehicle routes and schedules is

named Flexible.

All three models are started using the same vehicle routes, enabling any improvement in the

objective value to be attributed to the joint vehicle and crew optimization rather than to other

causes, such as the branching decisions used to obtain an initial solution. Because the vehicle routes

in Fixed and Semi-flexible are fixed to the initial vehicle routing solution but Semi-flexible also

searches over vehicle schedules, any improvement in crew routing objectives seen in Semi-flexible can

be attributed to better vehicle scheduling. Similarly, the impact of rerouting vehicles according to

the crew objectives can be examined by comparing Flexible against Semi-flexible since Semi-flexible

has fixed vehicle routes but Flexible does not.

The mixed integer programming models and constraint programming models are respectively

implemented in Gurobi and Objective-CP (Van Hentenryck and Michel 2013). All six models are

solved using branch-and-bound and the large neighborhood search procedures detailed in Section 7.

The two search techniques are respectively named BB and LNS.

The following parameters are used for the large neighborhood search:

• The four neighborhoods are selected with equal probability. For the first stage of the sequential

methods, there is an equal probability of selecting any of the two vehicle neighborhoods.

• For the vehicle route neighborhood, between two and five vehicle routes are destroyed. If the

current solution has fewer than the chosen number of vehicle routes to destroy, one route will be

retained and the rest destroyed.

• For the request neighborhood, between two and seven pickup-delivery pairs are destroyed but

at least one is retained.



Author: Article Short Title
30 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

MIP-BB CP-BB MIP-LNS CP-LNS

Fixed 118 180 151 180
Semi-flexible 121 180 144 180
Flexible 94 180 143 180

Table 3 Number of instances with feasible solutions for each method.

• For the crew route neighborhood, between two and seven crew routes are destroyed but at

least one is retained.

• For the crew passenger neighborhood, the passenger segments of all crews are destroyed but

the driving segments are retained.

• For MIP-LNS, Gurobi is called to determine values for the relaxed variables until it reaches a

time limit of one minute.

• For CP-LNS, Objective-CP is used to fix values for the relaxed variables until it reaches a

failure limit of 800.

The vehicle routing initialization is solved for one hour and the main model is solved for three

hours on an Intel Xeon E5-2660 V3 CPU at 2.6 GHz.

8.3. Feasible Solutions

Table 3 shows the number of instances for which the methods find at least one feasible solution.

The CP-based methods find feasible solutions to all 180 instances but the MIP-based methods face

significant difficulties in even finding feasible solutions.

8.4. The Impacts of Rescheduling Vehicles

Table 4 compares the four Semi-flexible models against the Fixed models. The advantages seen in

Semi-flexible in comparison to Fixed can be attributed to the ability to co-optimize vehicle schedules

and crews. The results show that the four Semi-flexible approaches perform substantially better

than their Fixed counterparts, achieving overall cost reductons of between 4.40% and 12.82%. The

difference is most apparent in MIP-LNS, which performs up to 50.32% better than Fixed MIP-LNS.

However, it also performs up to 129.03% worse. Semi-flexible MIP-BB performs up to 1.22% worse

than Fixed MIP-BB, while Semi-flexible CP-BB and CP-LNS perform no worse than their Fixed

variants.

A comparison of the four Semi-flexible methods against the a posteriori best Fixed method

of each instance is also presented in the table. The results indicate that Semi-flexible MIP-BB

(98.59%), CP-BB (12.19%) and MIP-LNS (28.69%) all perform worse than the best Fixed method

on average. Only Semi-flexible CP-LNS improves on the best Fixed approach on average (9.28%). In

fact, CP-LNS only performs up to 0.06% worse than the best Fixed approach on difficult instances,

whereas the other three methods perform from five to over nine times worse. However, all four
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MIP-BB CP-BB MIP-LNS CP-LNS

Fixed Average −12.82% −9.64% −4.40% −9.52%
Minimum −45.36% −45.68% −50.32% −31.12%
Maximum 1.22% 0.00% 129.03% 0.00%
Standard deviation 10.96% 8.11% 22.38% 7.83%

Best Fixed Average 98.59% 12.19% 28.69% −9.28%
Minimum −31.02% −31.02% −31.02% −31.05%
Maximum 918.69% 754.83% 560.02% 0.06%
Standard deviation 173.77% 71.24% 95.37% 7.60%

Table 4 Comparison of the four Semi-flexible methods against their Fixed counterparts and the best Fixed

method of each instance.

Semi-flexible approaches can perform up to 31% better. The standard deviations of comparing

MIP-BB, CP-BB and MIP-LNS against the best Fixed approach is particularly large, indicating

that their performance is highly dependent on the instances. The standard deviation of CP-LNS is

much smaller, suggesting that this method is more consistent in its performance.

The excellent behavior of Semi-flexible CP-LNS indicates that there is significant value in jointly

optimizing vehicle schedules and crew routes in a two-stage approach consisting of an initial vehicle

routing phase and a vehicle scheduling and crew routing and scheduling step.

8.5. The Impacts of Rerouting Vehicles

The effects of rerouting vehicles according to crew objectives can be observed by comparing Flexible

to Semi-flexible. Table 5 provides statistics comparing the four Flexible models against the Semi-

flexible models. On average, Flexible MIP-BB (0.49%), CP-BB (0.30%) and CP-LNS (1.61%)

perform better than their Semi-flexible counterparts. However, allowing variable vehicle routes

is detrimental to Flexible MIP-LNS. It displays significant difficulties in finding good feasible

solutions, performing 3.67% worse than Semi-flexible MIP-LNS overall. Flexible MIP-BB, CP-BB

and MIP-LNS can all perform up to 22.52% better than their Semi-flexible variants, while CP-LNS

can reach 30.76% better. Due to the short time limit and the larger search space, all four Flexible

methods can perform worse than their Semi-flexible counterparts. In particular, Flexible MIP-LNS

can be up to 58.89% worse off than Semi-flexible MIP-LNS.

The trends seen in comparing Flexible against the best Semi-flexible model is similar to comparing

Semi-flexible against the best Fixed method in the previous subsection. On average, only Flexible

CP-LNS performs better than the best Semi-flexible model (1.45%), and the other three approaches

perform significantly worse (24.45% to 103.08%). Even on difficult instances, Flexible CP-LNS only

performs up to 9.02% worse than the best Semi-flexible model; the other three models perform

from seven to over ten times worse. The standard deviation is again small for CP-LNS, indicating

that its performance is much more consistent than the other three methods.
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MIP-BB CP-BB MIP-LNS CP-LNS

Semi-flexible Average −0.49% −0.30% 3.67% −1.61%
Minimum −22.52% −22.52% −22.52% −30.76%
Maximum 5.73% 1.55% 58.89% 9.02%
Standard deviation 3.34% 2.14% 10.73% 4.80%

Best Semi-flexible Average 103.08% 24.45% 48.48% −1.45%
Minimum −22.52% −22.52% −22.52% −30.66%
Maximum 1054.08% 867.52% 739.96% 9.02%
Standard deviation 215.79% 83.86% 117.43% 4.72%

Table 5 Comparison of the four Flexible methods against their Semi-flexible counterparts and the best

Semi-flexible method of each instance.

It appears that the concepts of rerouting vehicles for crew optimization are only realized by

Flexible CP-LNS, which improves upon the best Semi-flexible method with cost reductions of up to

30.66% and 1.45% on average. These results indicate that improvements can be found by rerouting

vehicles but are computationally demanding, warranting further investigation on the consequences

of vehicle rerouting for crew routing and scheduling.

8.6. The Impacts of Rerouting and Rescheduling Vehicles

The combined effects of both rerouting and rescheduling vehicles can be analyzed in a comparison

between the Flexible and Fixed methods. Table 6 shows summary statistics of this comparison.

Note that there is some inconsistency with the MIP results in Tables 4 and 5 due to the different

instances for which feasible solutions are available. The results demonstrate that Flexible MIP-BB

and MIP-LNS are inferior to Semi-flexible MIP-BB and MIP-LNS on average. Flexible MIP-BB

and MIP-LNS find fewer feasible solutions and improve less on Fixed MIP-BB and MIP-LNS.

Contrastingly, Flexible CP-BB and CP-LNS perform 9.90% and 11.01% better than Fixed CP-BB

and CP-LNS, which are more than the 9.64% and 9.52% improvements found by Semi-flexible

CP-BB and CP-LNS. MIP-BB, CP-BB and CP-LNS achieve benefits of up to 45.36%, 45.68% and

47.04% at their best, and never perform worse than their Fixed counterparts. Flexible MIP-LNS

improves on its own Fixed variant the most (50.32%), probably because Fixed MIP-LNS performed

poorly. Flexible MIP-LNS is also the only method not dominating its Fixed counterpart, finding

solutions up to 131.06% worse.

A comparison of Flexible against the a posteriori best Fixed results is also almost identical to the

previous discussions. Flexible MIP-BB, CP-BB and MIP-LNS average 78.56%, 11.94% and 33.25%

worse than the best Fixed result, and can exceed nine times worse. Only Flexible CP-LNS improves

on its Fixed variant on average (10.77%) and never performs any worse.

These results indicate that given an appropriate formulation and search technique, it is possible to

find improved solutions by rerouting and rescheduling vehicles. Considering that Flexible CP-LNS
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MIP-BB CP-BB MIP-LNS CP-LNS

Fixed Average −11.13% −9.90% −0.86% −11.01%
Minimum −45.36% −45.68% −50.32% −47.04%
Maximum 0.00% 0.00% 131.06% 0.00%
Standard deviation 10.89% 8.49% 26.09% 8.34%

Best Fixed Average 78.56% 11.94% 33.25% −10.77%
Minimum −36.82% −36.82% −36.82% −46.99%
Maximum 918.69% 754.83% 560.02% 0.00%
Standard deviation 182.18% 71.37% 97.38% 8.16%

Table 6 Comparison of the four Flexible methods against their Fixed counterparts and the best Fixed method

of each instance.

dominates the best Fixed and improves on Semi-flexible as discussed previously, it is easy to

conclude that Flexible CP-LNS is the best method of those evalulated.

8.7. Detailed Analysis

This section presents the main discoveries for each method. All solutions from MIP-BB, CP-BB,

MIP-LNS and CP-LNS are reported in the accompanying online appendix.

Analysis of MIP-BB A number of findings related to MIP-BB are listed below:

• Fixed is only able to find feasible solutions to 118 of the 180 instances despite being initialized

with feasible vehicle routes. Semi-flexible and Flexible respectively find feasible solutions to 121 and

94 instances. MIP-BB performs particularly poorly on the instances with 40 and 50 pickup-delivery

pairs. Fixed, Semi-flexible and Flexible are only able to find feasible solutions to 7, 10 and 9 of the

60 largest instances respectively.

• Semi-flexible does not dominate Fixed; Semi-flexible performs worse on two instances (1.22%

and 0.42%). On average, Semi-flexible performs 12.82% better than Fixed on the 106 instances for

which they both find feasible solutions. For the cost functions w1 = 1000 and w2 = 1000, w1 = 1000

and w2 = 5000, and w1 = 5000 and w2 = 1000, Semi-flexible respectively averages 14.48%, 17.48%

and 6.76% better than Fixed on the 36, 34 and 36 instances with feasible solutions from both

models. As discussed previously, these improvements are likely a consequence of allowing variable

vehicle schedules.

• There are 82 instances for which Semi-flexible reschedules the vehicles for an improved overall

cost and a reduction in the number of crews. For these instances, 7.52 fewer crews are needed on

average, resulting in cost savings of 16.55%.

• Flexible dominates Fixed. It finds savings of 11.13% better overall, at least 20% savings on

16 instances, and 45.36% savings on one instance. For the three cost functions, Flexible performs

12.46%, 15.41% and 5.94% better than Fixed on average on the 29, 25 and 28 instances for which

both models find feasible solutions.
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• There are 25 instances for which Flexible trades crew costs for vehicle costs in order to find

overall better solutions. On these instances, overall costs reduced by 12.97%, vehicle costs increased

by 4.20% and crew costs reduced by 19.18%. Two of these 25 instances require one more vehicle but

one fewer crew, resulting in 0.50% and 10.49% cost savings overall, which comprises of an increase

in vehicle costs of 44.93% and 48.01%, and a decrease in crew costs of 13.98% and 14.13%.

• Flexible performs 0.49% better on average than Semi-flexible. There are 12 instances for which

Flexible performs worse than Semi-flexible, and 28 instances for which it performs better. For the

three cost functions, Flexible averages 0.49%, 0.70% and 0.26% better than Semi-flexible on the 31,

31 and 30 instances for which both approaches find feasible solutions.

• There are 80 instances for which all three variants find feasible solutions. On these instances,

Semi-flexible and Flexible perform 10.77% and 11.41% better than Fixed respectively, and Flexible

improves upon Semi-flexible by 0.72%. These results suggest that Flexible MIP-BB is superior to

Semi-flexible; although it is difficult to definitively argue this case considering that Flexible only

finds feasible solutions to 94 instances whereas Semi-flexible finds feasible solutions to 121 instances.

Analysis of CP-BB Several findings focusing on CP-BB are discussed below:

• Fixed, Semi-flexible and Flexible find feasible solutions to all 180 instances.

• CP-BB Fixed, Semi-flexible and Flexible averages 10.81%, 8.72% and 8.62% better than

MIP-BB Fixed, Semi-flexible and Flexible on the 80 instances where the three variants of MIP-BB

find solutions. CP-BB Fixed performs better than MIP-BB Fixed on 20 instances and worse on 15

instances. CP-BB Semi-flexible performs better than MIP-BB Semi-flexible on 20 instances and

worse on 15. CP-BB Flexible performs better than MIP-BB Flexible on 21 instances and worse on

16 instances.

• Semi-flexible performs 9.64% better overall than Fixed. For the three cost functions, it averages

10.39%, 12.96% and 5.59% better. These numbers are not as pronounced as MIP-BB because Fixed

CP-BB already performs better than Fixed MIP-BB.

• Semi-flexible dominates Fixed, which shows that CP-BB can improve crew optimization by

searching over vehicle schedules. On 144 instances, Semi-flexible finds solutions with 4.47 fewer

crews on average and reductions of 12.03% in cost compared to Fixed.

• Flexible dominates Fixed and averages 9.90% better overall, and 10.70%, 13.28% and 5.71%

better for the three cost functions.

• Flexible performs almost identically to Semi-flexible, achieving 0.30% better solutions in general.

It performs better than Semi-flexible on 28 instances, achieving reductions of 14.20% in cost. It

also performs worse on three instances, with increased costs of 0.54% on average.

• There are 24 instances on which Flexible finds improved solutions compared to Fixed by

increasing vehicle costs. Increasing vehicle costs by 0.25% allows crew costs to be decreased by
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21.20%, achieving an overall reduction of 14.65%. On the same instances, relaxing the vehicle routes

allows Flexible to improve upon Semi-flexible by decreasing crew costs by 3.81%, resulting in an

overall decrease of 2.26% in costs.

Analysis of MIP-LNS An analysis of MIP-LNS is presented below:

• Fixed, Semi-flexible and Flexible find feasible solutions to 151, 144 and 143 instances respectively;

that is, 33, 23 and 49 more than MIP-BB.

• Semi-flexible sees benefits of 4.40% compared to Fixed. It performs worse (23.18%) on five

instances and better (11.62%) on 115 instances. For the three cost functions, Semi-flexible finds

cost savings of 5.27%, 5.05% and 2.88%.

• Semi-flexible is able to reschedule the vehicles to reduce the total cost and the total number of

crews compared to Fixed on 99 instances. On these instances, 2.97 fewer crews are required and

13.11% cost savings are available.

• Flexible improves upon Fixed by 0.86% overall. The cost reductions on 13 instances exceed

20%, and reaches 50.32% on one instance. For the three cost functions, it performs 2.59% better,

1.24% worse and 1.31% better.

• Flexible performs 3.67% worse than Semi-flexible overall. The solutions are 2.77%, 6.29% and

1.83% worse when separated into the three cost functions.

• Flexible reroutes vehicles to increase vehicle costs but decrease crew costs on 36 instances.

Vehicle costs are increased by 0.28% on average when compared to Fixed. In return, crew costs are

decreased by up to 39.97% but averages 18.20%. On these 36 instances, overall costs are reduced by

13.05%.

• MIP-LNS Fixed, Semi-flexible and Flexible averages 11.06%, 5.94% and 4.84% better than

MIP-BB on the 80 instances that all six variants find feasible solutions, and 8.58%, 16.40% and

21.23% worse than CP-BB on the 140 instances with feasible solutions.

Analysis of CP-LNS A number of key results are highlighted below:

• Fixed, Semi-flexible and Flexible find feasible solutions to all 180 instances.

• Semi-flexible dominates Fixed, performing 9.52% better on average, and 10.29%, 12.79% and

5.49% better for the three cost functions.

• Semi-flexible reschedules the vehicles on 141 instances to find lower total costs, which are

reduced by 12.13%. On average, 2.98 fewer crews are necessary.

• Flexible dominates Fixed, improving upon Fixed by 11.01% overall, and 11.70%, 14.72% and

6.62% for the three cost functions.

• There are 30 instances for which Flexible performs worse (1.84%) and 98 instances for which it

performs better (3.51%) than Semi-flexible. Generally, Flexible improves on Semi-flexible by 1.61%,

unlike the other three search methods, for which Flexible performs nearly identically or worse than

Semi-flexible.
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Figure 13 Plots of the objective value, the percentage change and the number of vehicles and crews over time

for Flexible CP-LNS on an instance with |L| = 11, |P| = 30, w1 = 1000 and w2 = 5000. Lines colored

blue represent vehicles, red represent crews and black represent the total objective.
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• Flexible often finds solutions in which vehicle costs are higher than those from Fixed. On

75 instances, it increases vehicle costs by 1.48% and decreases crew costs by 17.83%, resulting in

savings of 12.82% on average.

• Figure 13 shows three plots related to Flexible CP-LNS on an instance with |L|= 11, |P|= 30,

w1 = 1000 and w2 = 5000. Notice that the vehicle costs and crew costs do not monotonically decrease.

Furthermore, the plots show that the solver twice finds a solution that uses one additional vehicle

to decrease overall costs. The final solutions from Fixed and Semi-flexible require 4 vehicles and 29

and 26 crews respectively. The final solution of Flexible requires 5 vehicles but only 24 crews. This

solution is 16.09% better than Fixed and 6.76% better than Semi-flexible. Vehicle costs are increased

by 22.81% but crew costs are decreased by 17.27% compared to Fixed and 7.76% compared to

Semi-flexible.

• On average, CP-LNS Fixed, Semi-flexible and Flexible respectively perform 12.35%, 11.37%

and 13.07% better than MIP-BB, 12.17%, 12.32% and 13.62% better than CP-BB and 11.93%,

13.41% and 17.41% better than MIP-LNS on the instances for which the six variants in each

comparison find feasible solutions.

9. Conclusion

This paper presents the Joint Vehicle and Crew Routing and Scheduling Problem, which is motivated

by applications arising in humanitarian and military logistics. The problem routes and schedules

vehicles and crews to pick up and deliver requests. Because crews are able to interchange vehicles,

both vehicle routes and crew routes become highly interdependent in space and time.

This paper develops a high-level model of the problem, which is formulated as a mixed integer

programming model and a constraint programming model. The two models overlay crew routing

constraints over the Pickup and Delivery Problem with Time Windows. The constraint programming

model features a symmetry-breaking global constraint and a global optimization constraint to detect

infeasibility and to bound crew objectives. Both the mixed integer programming and constraint

programming models are solved using a regular branch-and-bound search and a large neighborhood

search. In order to compare the effects of rerouting and rescheduling vehicles on crew optimization,

both models are extended with constraints that (1) fix the vehicle routes and (2) fix the vehicle

routes and vehicle schedules. Comparing the full model, called Flexible, against one with fixed

vehicle routes, called Semi-flexible, allows the impacts of rerouting vehicles for crew optimization

to be quantified. Similarly, comparing Semi-flexible to the model with fixed vehicle routes and

schedules, named Fixed, allows the benefits of rescheduling vehicles to be observed.

Experimental results indicate that jointly optimizing vehicle and crew routing and scheduling

achieves significant benefits, and that the constraint programming model coupled with large
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neighborhood search finds the greatest reductions in costs compared to the other approaches. In

particular, it produces average improvements of 10.77% compared to the a posteriori best Fixed

sequential method and 1.45% compared to the a posteriori best partially sequential Semi-flexible

method.

All models and search methods found solutions that trade crew costs for vehicle costs in order

to produce an overall improved solution. The ability to use fewer crews at the expense of more

vehicles is a key feature of integrated models and is highly difficult, if not impossible, to replicate

in sequential methods.

These results highlight the benefits of jointly optimizing vehicles and crew, and in particular,

suggest that many of the benefits of jointly optimizing vehicle and crew routing originate in the

ability to reschedule vehicles according to crew objectives. There are also benefits in rerouting

vehicles for crew optimization but, at this stage, they seem much more computationally demanding.

There are several interesting research avenues going forward. Given the strong performance of the

Semi-flexible methods, it would be interesting to study whether vehicle scheduling and crew routing

can be solved to optimality using combinations of constraint programming and mathematical

programming. Another direction for future research is to evaluate a three-stage optimization

process that runs Fixed, Semi-flexible and Flexible in sequence with each stage initialized using the

solution from the previous stage. Furthermore, another promising direction for future research is to

develop neighborhoods that span vehicle and crew routes and/or schedules because the existing

neighborhoods only consider vehicle routes or crew routes independently. Finally, it will also be

interesting to compare the existing routing models against state-of-the-art scheduling models based

on constraint programming.
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