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Socially aware transit solutions focus on solving ‘first/last mile’ challenge

By Pascal Van Hentenryck

In the United States, car ownership is still the best pre-
dictor of upward social mobility. Indeed, the relationship 
between transportation and social mobility is stronger 
than that between mobility and several other factors, like 
crime, elementary school test scores or the percentage of 
two-parent families in a community (“Transportation 

Emerges as Crucial to Escaping Poverty,” Mikayla Bouchard, 
The New York Times, May 7, 2015). 

Those without a car are grievously disadvantaged in access-
ing jobs, healthcare and decent groceries. Millions of people 
with health insurance cannot get to the doctor due to a lack of 
mobility options. Tens of millions do not live within a mile of 

a supermarket and often shop in convenience stores, with sig-
nificant consequences in the quality of their nutrition (“The 
Grocery Gap: Who Has Access to Healthy Food and Why 
It Matters,” Sarah Treuhaft and Allison Karpyn, Policy Link). 
Some children need to transfer buses twice before getting to 
the school of their choice, limiting access to after-school pro-
grams and impacting their sleep patterns.

Advanced technologies have much to offer but improving 
vehicles is only part of the solution. For instance, efficient elec-
tric vehicles cannot reduce congestion, which may cost $184 
billion in 2030 for the United States alone (“Beyond Traffic 
2045,” U.S. Department of Transportation). Public transpor-
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tation has the potential to mitigate 
congestion and provide environmen-
tally friendly and cost-effective mobil-
ity. Existing systems, however, are of-
ten plagued with the infamous “first/
last mile” problem – the inability to 
take travelers all the way from their 
origin to their destination. 

Indeed, in transit systems, fewer 
than 10% of riders typically walk 
more than a quarter of a mile. As a 
result, the vast majority of travelers 
prefer private vehicles if they can af-
ford them, often creating congestion 
and emitting significant greenhouse 
gasses. 

New mobility services such as Lyft 
and Uber have improved transporta-
tion for various population segments 
by using information technology 
to connect riders and potential drivers. Unfortunately, they 
increase congestion and greenhouse gas emissions; some cit-
ies, including New York, have started to limit their numbers. 
More importantly perhaps, they often serve the needs of an 
affluent population and have widened inequalities in acces-
sibility by further draining the revenues of transit authorities 
(“Just a Better Taxi? A Survey-Based Comparison of Taxis, 
Transit, and Ridesourcing Services in San Francisco,” Lisa 
Rayle, Daniel Dai, Nelson Chan, Robert Cervero and Susan 
Shaheen, Transport Policy, 2016).

Fortunately, ubiquitous connectivity and advances in arti-
ficial intelligence and operations research offer significant op-
portunities to design socially aware, on-demand mobility sys-
tems. These novel systems are capable of addressing the first/
last mile problem, reduce congestion and parking pressure and 
decrease greenhouse gas emissions. They may transform mo-
bility for entire population segments and will benefit from au-
tonomous vehicles whenever they become available. 

To illustrate the opportunities and the underlying tech-
nological challenges, we will review three such systems: on-
demand multimodal transit systems, community-based car 
sharing and large-scale car sharing. It describes the motivation 
behind these novel mobility systems, provides some pointers 
to the technology powering them and describes case-studies 
highlighting their potential benefits in cost and convenience.

On-demand multimodal transit systems
On-demand multimodal transit systems (ODMTS) (Arthur 
Maheo, Philip Kilby, and Pascal Van Hentenryck, “Benders 
Decomposition For The Design Of A Hub And Shuttle Public 
Transit System,” Transportation Science, January-February 2019) 
aim at transforming public transit by simultaneously address-

ing accessibility and congestion issues. Being multimodal, 
ODMTS combine on-demand mobility services to serve low-
density regions with high-occupancy vehicles (buses or trains) 
traveling along high-density corridors. They differ from mi-
crotransit solutions by planning, operating and optimizing 
transit systems holistically, using state-of-the-art optimization 
technology and machine learning. As a result, they may trans-
form accessibility for entire population segments, decreasing 
widening inequalities in transportation and providing a sus-
tainable transportation model for American cities and beyond.

Informally speaking, ODMTS are for transit systems what 
Lyft and Uber are for taxi services: Their goal is to use artifi-
cial intelligence and operations research, as well as information 
and communication technologies, to transform public tran-
sit and improve accessibility and convenience. In its simplest 
form, an ODMTS combines small, on-demand, ride-sharing 
shuttles to address the ubiquitous first/last mile problem with 
high-occupancy vehicles (e.g., buses) operating a network 
of high-density corridors to mitigate congestion. The on-
demand shuttles are best viewed as feeders to and from the 
high-occupancy network, although they also serve the local 
demand. 

Figure 1 illustrates this basic model. Large ODMTS may 
feature multiple types of high-occupancy vehicles (e.g., trains 
and buses), as well as various forms of small vehicles, which 
may be shuttles, e-scooters or bicycles in appropriate settings.

An ODMTS forms a unique, integrated network that is de-
signed, planned and operated holistically. The network design 
chooses the routes for the high-occupancy vehicles, sizes the 
various fleets and produces the driver timetables. The OD-
MTS real-time operations decompose a trip in a series of legs 
and solve generalized dial-a-ride problems over a rolling hori-

FIGURE 1

On-demand multimodal transit
An on-demand multimodal ride system from L1 to L4 with two shuttle legs around the bus leg 
L2 to L3 in downtown Ann Arbor, Michigan. 
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zon to dispatch and route vehicles and 
perform ride-sharing. The dial-a-ride 
optimization minimizes the average 
waiting time, while ensuring that any 
ride does not exceed the time of the 
shortest path too much (e.g., 15%). 
The overall pipeline is depicted in 
Figure 2. 

Given that there is no range anxiety 
in ODMTS, they could be operated 
entirely by electrical vehicles. More-
over, ODMTS are also a natural path-
way to integrate autonomous vehicles 
as they become available.

Simulation and pilot results on 
small and medium transit systems 
(e.g., 7.5 million riders a year) have 
shown that an ODMTS can be priced 
like a traditional transit system while 
reducing wait times and/or improv-
ing accessibility. This is often pos-
sible due to a significant reduction in 
capital expenditures that compensate 
for additional driver costs for the on-
demand shuttles. These simulations 
were performed in a variety of set-
tings including the city of Canberra, 
Australia, and the transit system of the 
University of Michigan in Ann Arbor 
that represent extremes in terms of 
population densities. 

The chart on Page 32 depicts the 
benefits for Canberra: The ODMTS 
improves convenience (trip time and 
transfer) by a factor of two and cuts 
the budget in half. 

Figure 3 depicts some interesting 
results for the ODMTS in Ann Arbor, 
including the fact that almost all rides 
take one or two legs and have short 
waiting and trip times. The Rein-
venting Public Urban Transportation 
and Mobility (RITMO) pilot at the 
University of Michigan in spring 2018 
has validated some of the simulation 
results (“RITMO app introduces on-demand mass transit at 
UM, with plans to expand,” Concentrate, 2018).

Community-based car sharing
Parking occupies a significant portion of our cities. There are 
at least 800 million parking spaces in the United States alone 
and 14% of Los Angeles County is devoted to parking (“The 

Elephant In The Planning Scheme: How Cities Still Work 
Around The Dominance Of Parking Space,” Elizabeth Tay-
lor, The Conversation, 2018). Parking also contributes to con-
gestion, as the average share of cruising to find a parking spot 
is 30% in the United States (“Cruising For Parking,” Donald 
Shoup, Transport Policy, 2006; “The High Cost of Free Park-
ing,” Shoup, American Planning Association, 2005). 

FIGURE 2

Dial-a-ride optimization
The pipeline for designing and operating an ODMTS transit system that connects riders with 
high-volume transit via the use of on-demand shuttle service.

Annual presentation, video offer 
details on mobility solutions
Author Pascal Van Hentenryck presented his research on mobility 
challenges and solutions during his keynote speech May 20 at the 
IISE Annual Convention & Expo 2019 in Orlando, Florida.

You can watch portions of his speech plus a video interview afterward with IISE at 
https://link.iise.org/Annual2019VanHentenryck.

FIGURE 3

Rides and waiting
Calculating trip times per number of legs for the ODMTS system at the University of Michigan.
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Parking pressure is steadily increasing in corporate and uni-
versity campuses and cities. This second case study was mo-
tivated by parking pressure at the University of Michigan in 
Ann Arbor, where the 15 most-used downtown parking lots 
show typical parking usage: Cars arrive in the morning, park 
in a lot for six to 10 hours and leave the lot in the evening. 

Car pooling has long been proposed as a potential solution 
for reducing peak-hour congestion and parking pressure. Its 
adoption, however, is poor in general as 76.4% of American 
commuters choose to drive alone (“Who Drives to Work? 
Commuting by Automobile in the United States,” Brian 
McKenzie, American Community Survey Reports, U.S. Census 
Bureau, 2015). Jianling Li and co-authors (“Who Chooses 
to Carpool and Why? Examination of Texas Carpoolers,” Li, 
Patrick Embry, Stephen P. Mattingly, Kaveh Farokhi Sad-
abadi, Isaradatta Rasmidatta, Mark W. Burris, Transportation 

Research Record: Journal of the Transportation Research 
Board, 2007) identified the difficulty in finding peo-
ple with similar location and schedule as the main 
reason for not car pooling. There is thus a unique 
opportunity to build a matching platform based on 
artificial intelligence and operations research for 
boosting adoption of car pooling.

Community-based car pooling (“Community-
Based Trip Sharing For Urban Commuting,” M. 
Hafiz Hasan, Pascal Van Hentenryck, Ceren Bu-
dak, Jiayu Chen, Chhavi Chaudhry, Proceedings of 
the Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018) is an embodiment of such a platform. Its 
key idea is to organize pooling around commuting 
communities, exploiting spatial and temporal local-
ity, i.e., the knowledge of when employees arrive 
on a (corporate or university) campus in the morn-
ing and leave in the evening. It also guarantees a 
“ride back” in the evening, probably the most criti-
cal factor for adoption. This contrasts with the car 
pooling platform Scoop, which only provides weak 
guarantees for a ride back, with monthly limits on 
how much auxiliary services can be used when a 
ride back is not available. 

To satisfy these three properties – spatial and tem-
poral locality and a guaranteed ride back – com-
munity-based car pooling proceeds in two steps. 
First, it clusters commuters in communities, thus 
ensuring spatial locality. In the second step, an opti-
mization algorithm selects drivers and matches rid-
ers to minimize the number of cars and the total 
travel distance. Each driver is assigned a route for the 
morning and evening commutes so that every rider 
is guaranteed a ride back. The routes also guarantee 
that each commuter will be served within requested 
time windows, exploiting temporal locality in the 

matching of drivers and riders. 
The resulting optimization problem can be seen as two syn-

chronized dial-a-ride problems. In the model in Figure 4, Ω+ 

and Ω- respectively represent a set of inbound and outbound 
routes. A decision variable Xr denotes whether a route r is 
included in the solution. The objective (1) minimizes the cost 
of the routes, while constraints (2) and (3) ensure that a rider 
is present in an inbound and outbound route (ᾳr,i is 1 if rider i 
is serviced by route r). Constraints (4) express the “ride back” 
constraints (βr,i is 1 if rider i is the driver on route r). This 
ensures that a driver in the morning is also a driver in the after-
noon and vice-versa. The routes can be generated on-demand 
using a column-generation approach.

It would be ideal to have the same riders commute together 
in the morning and the evening as well as every day of the 
week. Unfortunately, one result of this study is the recognition 

FIGURE 4

Formula for a fix
The master optimization solution for driver and route selection in ride-sharing.
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that riders and drivers must be matched dynamically every day 
and every morning and afternoon: It is only when riders are 
matched dynamically that significant car-pooling occurs. This 
important realization, which explains the poor adoption in 
existing car-pooling programs, is illustrated in Figure 5. The 
“no sharing” column represents the number of cars with no 
car-pooling. Columns WD-WIO, WD-DIO, DD-DIO and 
DD impose progressively fewer constraints on the matching. 
In particular, WD-WIO requires that the same routes and 
drivers are used every day and that the same riders commute 
together every morning and evening. 

As can be seen, these constraints are too stringent. Car pool-
ing under these conditions reduces the number of cars on the 
road only by 2%. In contrast, DD only requires that the drivers 
are the same in the morning and in the evening in order to 
satisfy the “ride back” constraint. It saves the number of cars 
by 45% for the entire region and by more than 60% within the 
city limit. The platform thus needs to match drivers and riders 
every morning and every afternoon in real-time. 

Moreover, it is desirable to adjust the afternoon dynamically 
as riders update their schedules. Op-
timization algorithms based on route 
generation are capable to meet these 
requirements, primarily because they 
exploit spatial and temporal locality. 
The car-pooling platform must be 
dynamic; while the morning and 
evening shared routes are dense, their 
intersection is rather sparse.

Large-scale ride sharing
The final on-demand mobility sys-
tem presented is a large-scale ride-
sharing platform. Ride-hailing 
systems such as Lyft and Uber have 
increased congestion in many cit-
ies. For instance, recent studies (“Do 
Transportation Network Companies 
Decrease Or Increase Congestion?” 

Gregory Erhardt, Sneha Roy, Drew Cooper, Bhargava Sana, 
Mei Chen, Joe Castiglione, Science Advances, May 2019) have 
shown that between 2010 and 2016, weekday vehicle hours of 
delay increased by 62% compared to 22% in a counterfactual 
2016 scenario without ride hailing. 

Large-scale ride-sharing can change the equation. Authors 
Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, 
Emilio Frazzoli, and Daniela Rus (“On-Demand High-
Capacity Ride-Sharing Via Dynamic Trip-Vehicle Assign-
ment,” Proceedings of the National Academy of Sciences, 2017) 
have shown that 98% of the riders using taxi and limousine 
services in New York city can be served with 3,000 vehicles 
and an average wait of 3.8 minutes (the city has about 12,000 
taxis). Recent results using a bespoke column-generation ap-
proach have shown that all riders can be served with 2,000 
vehicles, an average wait time of 2.2 minutes and an average 
deviation of 0.62 minute compared to a direct trip (“Col-
umn Generation for Real-Time Ride-Sharing Operations,” 
Connor Riley, Antoine Legrain and Van Hentenryck, Inter-
national Conference on the Integration of Constraint Programming, 

FIGURE 5

Out of the pool
A look at car reductions for various levels of flexibility in community-based car sharing.

‘Down Under’ upside
The potential benefits of ODMTS (BusPlus) in cost and convenience as calculated for Canberra, Australia:

BusPlus ACTION

Day IZI Buses ($) Cost ($) Time (s) IZI Cost ($) Time (s)

Monday 31 31,989.33 202,122.34 855.87 3,068 402,006.75 1,635.22

Tuesday 31 31,989.33 194,840. 42 848.96 3,068 402,006.75 1,635.10

Wednesday 33 33,135.41 205,814.09 849.01 3,068 402,006.75 1,620.79

Thursday 34 33,255.16 208,575.61 852.13 3,068 402,006.75 1,632.79

Friday 31 33,409.37 202,288.85 849.35 3,068 402,006.75 1,610.85
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Artificial Intelligence and Operations Research, 2019). 
Figure 6 depicts some of these results and reports the aver-

age waiting times and average vehicle occupancy for vary-
ing numbers of customers and fleet sizes during peak hours. 

Interestingly, the average occupancy is around 1.3 as soon as 
there are more than 2,000 vehicles in the fleet. This indicates 
that ride-sharing does not typically lead to overcrowded ve-
hicles.

Technology opens new opportunities
Mobility is a critical aspect of modern societies: It provides 
access to jobs, healthcare, education, groceries and many 
other social services. The current transportation infrastruc-
ture and systems, however, face significant challenges in pro-
viding equitable access, as well as in decreasing congestion 
and greenhouse gas emission. 

Fortunately, the convergence of a number of technologies 
opens new opportunities that may fundamentally change the 
mobility landscape. In particular, information and commu-
nication technologies and progress in analytics driven by ma-
chine learning and optimization make it possible to imagine 
entirely new mobility systems to meet these pressing chal-
lenges. 

This article has presented three novel mobility systems 
addressing different needs: on-demand multimodal transit 
services, community-based car sharing and large-scale ride 
sharing. It has shown that these mobility systems have the 
potential to transform mobility by leveraging technology 
enablers in communication and predictive/prescriptive ana-
lytics. 

The mobility systems can be deployed immediately and 
are sustainable from an economic and business standpoint. 
Moreover, fleet electrification and autonomous vehicles 
would amplify their benefits. Electrification, combined with 
renewable energy, would eliminate a substantial portion of 
greenhouse gas emission due to transportation, since the pro-
posed mobility systems induce no range anxiety. Autonomy, 
if properly priced, will further decrease costs, enabling to 
further boost accessibility for entire population segments. 
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FIGURE 6

Large-scale ride-sharing in New York
The top picture shows the average wait times per number of 
customers for various fleet sizes. The image at bottom reports the 
average number of riders in a vehicle per number of customers for 
various fleet sizes.




