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Abstract The Commute Trip Sharing Problem (CTSP) was introduced to remove parking
pressure on cities, as well as corporate and university campuses. Its goal is to reduce the
number of vehicles being used for daily commuting activities. Given a set of inbound and
outbound requests, which consists of origin and destination pairs and their departure and
return times, the CTSP assigns riders and a driver, as well as inbound and outbound routes,
to each vehicle in order to satisfy time-window, capacity, and ride-duration constraints. The
CTSP guarantees a ride back for each rider, which is a critical aspect of such a ride-sharing
system. This paper generalizes the CTSP to account for uncertainties about the return trip.
Each rider is assumed to have a return time specified by a distribution (learned from his-
torical data) and, each day, a percentage of riders will want to preprone or postpone their
return trip to accommodate some schedule changes. The paper proposes two generaliza-
tions of the CTSP: the Flexible CTSP (FCTSP) and the Real-Time CTSP (RT-CTSP). In
the FCTSP, riders must confirm their final return times by a fixed deadline. In the RT-CTSP,
riders confirm their new return times in real time with some prior notice. The paper proposes
a two-step approach to address the FCTSP and the RT-CTSP. The first step uses a scenario-
based stochastic program to choose the drivers and the morning routes in order to maximize
the robustness of the driver assignment. The second step reoptimizes the plan at the fixed
deadline or in real time once the return times are confirmed. Experiments on a real-world
dataset of commute trips demonstrate the effectiveness of the algorithm in generating robust
plans and reveal a trade-off between vehicle reduction and plan robustness as the robust
plans tend to be conservative. A method is then proposed to evaluate this trade-off using the
per-unit price ratio of vehicle increase to uncovered riders.
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1 Introduction

The Commute Trip Sharing Problem (CTSP) was introduced in [7] in an effort to reduce
peak-hour traffic congestion and parking utilization for urban areas. It seeks an optimal
routing plan that maximizes ride sharing for a set of commute trips. Each commuter makes
two trip requests per day, one to the workplace and another back home. Each request has
specific pickup and drop-off locations which must be visited in order, time windows de-
scribing allowable service times at each location, and a ride-duration limit. The routes must
serve these trips exactly once according to their specifications while ensuring the capacity
of the vehicles used is not exceeded. In addition to this, the vehicle drivers for any day are
selected from the set of commuters; therefore, the set of drivers selected for the trips to the
workplace must be identical to that for the return trips.

The CTSP is therefore a Vehicle Routing Problem (VRP) with time-window, capacity,
pairing, precedence, ride-duration, and driver constraints. It is a generalization of the VRP
with Time Windows (VRPTW) which is well known to be NP-hard [13]. It was solved in
[7] using a three-stage approach which first clusters commuters according to their residential
locations, searches exhaustively for all feasible ride-sharing routes within each cluster, and
then solves a mixed-integer program (MIP) to optimize the selection of routes. Hasan et
al. [8] then introduced a branch-and-price algorithm to solve the problem that uses column
generation to search for feasible routes on demand.

This work generalizes the CTSP by considering a setting in which trip schedules are
known in advance, however there are uncertainties associated with the return-trip sched-
ules as they occur later in the day. More specifically, it introduces: (1) the Flexible CTSP
(FCTSP) whereby commuters are required to confirm their return times by a fixed deadline
and (2) the Real-Time CTSP (RT-CTSP) whereby commuters confirm their return times in
real time with some advance notice. Regardless of the problem variant, the routing plan must
commit the day’s drivers before the return times are confirmed. The challenge is therefore
to ensure that the plan is robust, i.e., to ensure that the drivers can still cover the return trips
despite the uncertainties in their schedules.

This paper explores a scenario-sampling approach to handle these uncertainties. The
method was first used in [1] for the VRP with stochastic customers and then by [15] to
tackle temporal uncertainty in the VRPTW. It assumes knowledge of probability distribu-
tions for every commuter describing the likelihood of their return-trip times which can be
sampled to obtain potential scenarios. This work incorporates the method into a multi-stage
framework, whereby the first stage optimizes a plan for several scenarios while subsequent
stages reoptimize the return-trip plan when additional information becomes available, i.e.,
just after the deadline for the FCTSP and at a regular frequency for the RT-CTSP which will
reoptimize batches of trips with confirmed return times.

The approach is evaluated on a real-world dataset of commute trips from the city of Ann
Arbor, Michigan. Its results show that the method produces plans that become more robust
as the number of sampled scenarios increases. Unfortunately, the increase in robustness
comes at a price of having additional vehicles. A method is therefore proposed to evaluate
the trade-off between plan robustness and vehicle reduction.

The rest of this paper is organized as follows. Section 2 first introduces the terminolo-
gies and assumptions used throughout the paper. Section 3 then reviews the mathematical
formulation of the CTSP and a column-generation algorithm by [8] for solving it. Section 4
then describes in detail the problem settings for the FCTSP and RT-CTSP and the optimiza-
tion algorithm. Section 5 reports the experimental setup and results of the computational
experiments. Finally, Section 6 provides some concluding thoughts.
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min TdDr
−ToDr

(1)

s.t. aoc ≤ Toc ≤ boc ∀c ∈ Cr (2)

Tdc ≤ bdc ∀c ∈ Cr (3)

Tpred(oc)+ζpred(oc)+ τ(pred(oc),oc) ≤ Toc ∀c ∈ Cr \{Dr} (4)

Tpred(dc)+ζpred(dc)+ τ(pred(dc),dc) = Tdc ∀c ∈ Cr (5)

Tdc − (Toc + soc )≤ Lc ∀c ∈ Cr (6)

Fig. 1 The Model for the Route-Scheduling Problem for a Valid Route r.

2 Notation and Preliminaries

A trip t =< o,dt,d,at > consists of an origin o, a departure time dt, a destination d, and an
arrival time at. On any day, a commuter c makes two trips: a trip to the workplace, t+c , and
a trip back home, t−c . These trips are referred to henceforth as inbound and outbound trips
respectively. A route r is a sequence of origin and destination locations from a set of inbound
or outbound trips whereby each origin and destination from the set is visited exactly once.
For instance, a possible route for trips t1 =< o1,dt1,d1,at1 > and t2 =< o2,dt2,d2,at2 > is
r = o2→ o1→ d1→ d2. An inbound route covers only inbound trips and an outbound route
covers only outbound trips. Each route r serves a set of riders Cr and has a driver Dr ∈ Cr.
The driver must be the rider residing at the start location of the route. For instance, rider 2
must be the driver of route o2→ o1→ d1→ d2. The total number of riders in the vehicle at
any point along a route cannot exceed its capacity.

Definition 1 (Valid Route) A valid route r visits oc before dc for every rider c ∈ Cr, starts
at oDr and ends at dDr , and respects the vehicle capacity.

It is assumed that commuters sharing rides are willing to tolerate some inconvenience
in terms of deviations to their trips’ desired departure and arrival times as well as in terms
of extensions to the ride durations of their individual trips. Therefore, a time window [ai,bi]
is constructed around the desired times and is associated with each pickup or drop-off loca-
tion i, where ai and bi denote the earliest and latest times at which service may begin at i
respectively, and a duration limit Lc is associated with each rider c to denote her maximum
ride duration. Let Ti denote the time at which service begins at location i, ζi be the service
duration at i, pred(i) denote the location on a route visited just before i, and τ(i, j) be the
estimated travel time for the shortest path between locations i and j.

Definition 2 (Feasible Route) A feasible route r is a valid one with pickup and drop-off
times Ti ∈ [ai,bi] for each location i ∈ r that ensures the ride duration of each rider c ∈ Cr
does not exceed Lc.

Determining if a valid route r is feasible amounts to solving the route-scheduling lin-
ear program (LP) shown in Figure 1. Its objective is to minimize the route’s total dura-
tion. Constraints (2) and (3) are time-window constraints for pickup and drop-off loca-
tions respectively, while constraints (4) and (5) describe compatibility requirements between
pickup/drop-off times and travel times between consecutive locations along the route. Fi-
nally, constraints (6) specify the ride-duration limit for each rider. Note that constraints (4)
allow waiting at pickup locations.
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min ∑
r∈Ω+∪Ω−

Xr (7)

s.t. ∑
r∈Ω+:c∈Cr

Xr = 1 ∀c ∈ C (8)

∑
r∈Ω−:c∈Cr

Xr = 1 ∀c ∈ C (9)

∑
r∈Ω+:Dr=c

Xr− ∑
r̂∈Ω−:Dr̂=c

Xr̂ = 0 ∀c ∈ C (10)

Xr ∈ {0,1} ∀r ∈Ω
+ ∪Ω

− (11)

Fig. 2 The Model for the CTSP.

Similar to [10,3,2], this work assumes on any day, each commuter c would specify
a desired arrival time at the destination of her inbound trip, at+c , and a desired departure
time at the origin of her outbound trip, dt−c . It also assumes that each would tolerate a
shift of ±∆ to the desired times. Therefore, time windows of [adc ,bdc ] = [at+c −∆,at+c +∆]
and [aoc ,boc ] = [dt−c −∆,dt−c +∆] are associated with the destinations of inbound trips and
origins of outbound trips respectively. Consequently, time windows of [aoc ,boc ] = [adc −
ζoc −Lc,bdc −ζoc − τ(oc,dc)] and [adc ,bdc ] = [aoc +ζoc + τ(oc,dc),boc +ζoc +Lc] are assigned
to the origins of inbound trips and destinations of outbound trips respectively. Similar to
[9], each rider c is assumed to be willing to tolerate an R% extension to her direct-ride
duration τ(oc,dc); therefore Lc = (1+R) · τ(oc,dc). Finally, this work assumes utilization of a
homogeneous fleet of vehicles with capacity K to serve all rides, and that all travel times
and distances satisfy the triangle inequality.

3 The Column-Generation Algorithm for the CTSP

The CTSP formulation uses Ω+ and Ω− to denote the set of all feasible inbound and out-
bound routes to serve a set of commuters C . Binary variable Xr indicates whether route
r ∈ Ω+ ∪Ω− is used in the optimal plan. The problem is defined in Figure 2. Objective
function (7) minimizes the number of routes used. Constraints (8) and (9) enforce coverage
of each rider’s inbound and outbound trips by exactly one route each, while constraints (10)
ensure the sets of drivers for inbound and outbound routes are identical.

The problem has been successfully solved using a column-generation algorithm by [8].
The algorithm leverages the shadow prices of the constraints of a restricted master problem
(RMP)—the linear relaxation of the original problem defined on a subset Ω+′ ∪Ω−′ of
all feasible routes—to calculate the reduced costs of routes. A pricing subproblem (PSP)
is executed alternately with the RMP to search for new routes with negative reduced costs
which are then added to Ω+′∪Ω−′. The RMP and PSP are solved repeatedly until the PSP is
unable to find any new route with negative reduced cost, at which point the optimal objective
value of the RMP converges to the optimal value z∗ of the linear relaxation of the original
problem. An integer solution is then obtained by solving the RMP as a MIP, and its quality
is evaluated by calculating an optimality gap which uses z∗ as the primal lower bound.

The PSP considers each rider c ∈ C as the driver of an inbound route r+c and an out-
bound route r−c , searches for such routes with minimum reduced costs, and adds them to
Ω+′ ∪Ω−′ should the costs be negative. The routes are found by first constructing a pair
of graphs G+

c = (N +
c ,A +

c ) and G−c = (N −
c ,A −

c ) for each driver c whose nodes N +
c
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and N −
c represent the locations (the origins and destinations) of all inbound and outbound

trips respectively and whose edges A +
c and A −

c represent location pairs that satisfy a pri-
ori feasibility constraints. Edge costs are calculated using the dual optimal solution of the
RMP so that the total cost of any path from oc to dc is equivalent to the path’s reduced cost.
A wait-time relaxation algorithm based on the label-setting, dynamic-programming algo-
rithm by Desrochers [4] is then used to search for the minimum-cost feasible route from
oc to dc from each graph. The algorithm searches for a preliminary feasible route with re-
laxed wait times and then verifies its feasibility with the inclusion of wait times by solving
the route-scheduling LP of (1)–(6). Infeasible routes are added to a set of forbidden paths
whose members are prevented from being discovered in subsequent runs, and the algorithm
is executed repeatedly until a feasible solution is found.

4 Robust Planning for the FCTSP and the RT-CTSP

In a practical setting for the CTSP, on any day, each commuter would make her trip request in
the morning, specifying the desired arrival time at her workplace and the expected departure
time for her return trip. The ride-sharing platform would then generate an optimal routing
plan based on these times which consists of the day’s designated drivers, the passengers they
need to cover in their inbound and outbound routes, and the corresponding routes they need
to take.

This work takes a step further by considering a setting in which the desired arrival times
are certain as they occur in the morning, soon after the requests are made. However, the de-
parture times might change due to unforeseen events occurring later in the day. The FCTSP
considers a setting whereby the departure times are confirmed by a fixed deadline, whereas
the RT-CTSP considers a more dynamic setting whereby the departure times are confirmed
in real time with some advance notice. Regardless of the problem setting, an inbound rout-
ing plan which commits drivers for the day needs to be generated before the departure times
can be confirmed. Therefore, the driver assignment needs to be robust to ensure that they
can cover as many return trips as possible, as the uncovered trips will need to be served by
an external, more expensive resource.

Most works on robust planning for transportation scheduling focus on addressing de-
mand uncertainty. For instance, Serra et al. [14] proposed a two-stage stochastic program-
ming formulation for handling uncertain passengers in the integrated last-mile transportation
problem [11,12], a problem which considers a fleet of shared vehicles working in concert
with a mass transit service to provide last-mile passenger transportation. To our knowledge,
Srour et al. [15] were the first tackle service-time uncertainty in the VRPTW. They utilized
scenario sampling, a method which assumes the differences between confirmed and forecast
service times of every customer are random variables whose distributions can be gleaned
from historical data. A sampled scenario is obtained by drawing presumed service times
from every customer distribution, and the stochastic information from several sampled sce-
narios is leveraged by deriving a routing plan for each scenario and selecting the plan that
most resembles every other plan using a consensus metric.

This work incorporates scenario sampling into a two-stage approach to produce robust
plans for the FCTSP and the RT-CTSP. The first stage optimizes selection of drivers and
generation of inbound routes by solving a model that optimizes route selection for a single
inbound scenario and a set of sampled outbound scenarios simultaneously. The second stage
reoptimizes the outbound routing plan once departure times have been confirmed (FCTSP)
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min ∑
r∈Ω+

Xr + ∑
s∈S

∑
r∈Ω

−
s

Xr (12)

s.t. ∑
r∈Ω+ :c∈Cr

Xr = 1 ∀c ∈ C (13)

∑
r∈Ω

−
s :c∈Cr

Xr = 1 ∀s ∈S ,∀c ∈ C (14)

∑
r∈Ω+ :Dr=c

Xr− ∑
r̂∈Ω

−
s :Dr̂=c

Xr̂ = 0 ∀s ∈S ,∀c ∈ C (15)

Xr ∈ {0,1} ∀s ∈S ,∀r ∈Ω
+ ∪Ω

−
s (16)

Fig. 3 The First-Stage Model for Optimizing Selection of Drivers and Inbound Routes.

or reoptimizes the outbound plan in a rolling-horizon approach (RT-CTSP) as departure
times are progressively confirmed over time.

4.1 Stage 1: Optimizing Selection of Drivers and Inbound Routes

In the first stage, a model which selects drivers for the day together with their inbound
routes is optimized. A single inbound scenario is derived from the commuters’ desired ar-
rival times, while a set of outbound scenarios is generated either by using the expected
departure times to obtain a scenario where the commuters don’t change their return sched-
ules or by sampling the departure-time distributions to obtain one where the commuters do.
Let S denote the set of outbound scenarios and Ω−s denote the set of all feasible outbound
routes for scenario s. The model is defined in terms of a binary variable Xr which indicates
whether a route r is selected for the optimal plan. It is defined in Figure 3. Objective func-
tion (12) minimizes the total number of selected routes. Constraints (13) enforce coverage
of each commuter’s inbound trip by exactly one route, while constraints (14) do the same
for each commuter’s outbound trip in each scenario s ∈S . Finally, constraints (15) ensure
the set of drivers selected for the inbound trips is identical to that for each outbound scenario
s ∈S .

A column-generation algorithm similar to that used in [8] is utilized to obtain a high-
quality solution for the model. An RMP is first introduced as the linear relaxation of the
model defined on a subset of all feasible routes, {Ω+′∪Ω−′s : s ∈S }. Let π+

c , π−c,s, and σc,s
denote the optimal duals of constraints (13), (14), and (15) of the RMP respectively. The
reduced cost of an inbound route r+ is then given by:

rcr+ = 1− ∑
c∈Cr+

π
+
c − ∑

s∈S
σDr+ ,s (17)

while that of an outbound route for scenario s, r−s , is given by:

rcr−s = 1− ∑
c∈Cr−s

π
−
c,s +σDr−s

,s (18)

A PSP is then composed to find new routes with negative reduced costs. The PSP con-
siders each rider c ∈ C as the driver of an inbound route r+c and |S | outbound routes
{r−c,s : s ∈ S }. For each such route, the PSP finds one with minimum reduced cost and
then selects those with negative reduced costs to augment {Ω+′ ∪Ω−′s : s ∈ S }. To find
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For each commuter i:
• Origin node: i
• Destination node: n + i
Virtual source node: 0
Virtual sink node: 2n + 1

Fig. 4 Graph G−c,s After Edge Elimination (Each Dotted Line Represents a Pair of Bidirectional Edges).

these routes, a complete inbound graph G+
c = (N +

c ,A +
c ) and |S | complete outbound

graphs {G−c,s = (N −
c,s ,A

−
c,s) : s ∈ S } are first constructed for each driver c. The nodes in

N +
c represent all inbound origins O+ and destinations D+, whereas those in N −

c,s repre-
sent all outbound origins O−s and destinations D−s . A time window [ai,bi] is associated with
each inbound node i ∈O+∪D+ based on requested trip times and similarly a time window
[ai,s,bi,s] is associated with each outbound node i ∈ O−s ∪D−s based on trip times for sce-
nario s. Edge costs are defined so that the total cost of any path from oc to dc is equivalent
to the path’s reduced cost. Let c(i, j) denote the cost of edge (i, j) and γ+(i) denote the set of
outgoing edges of node i. Costs of edges (i, j) ∈A +

c are then given by:

c(i, j) =


1−π

+
i −∑s∈S σc,s ∀(i, j) ∈ γ+(c)

−π
+
i ∀i ∈ O+ \{c}, ∀(i, j) ∈ γ+(i)

0 ∀i ∈D+, ∀(i, j) ∈ γ+(i)

(19)

while those of edges (i, j) ∈A −
c,s are given by:

c(i, j) =


1−π

−
i,s +σc,s ∀(i, j) ∈ γ+(c)

−π
−
i,s ∀i ∈ O−s \{c}, ∀(i, j) ∈ γ+(i)

0 ∀i ∈D−s , ∀(i, j) ∈ γ+(i)

(20)

A priori feasibility constraints proposed in [5,2,8] are then applied to all edges to identify
and eliminate those that cannot belong to any feasible route. Figure 4 provides a sketch of
G−c,s after edge elimination.

The wait-time relaxation algorithm from [8] is then applied to find the minimum-cost
feasible route from oc to dc from each graph, and routes with negative costs are added to
{Ω+′∪Ω−′s : s∈S }. The RMP and PSP are solved repeatedly until the RMP converges. An
upper and lower bound to z∗ are maintained for this purpose. The upper bound is given by the
optimal objective value of the RMP after each iteration, zRMP, while the lower bound zLB is
calculated using the method by Farley [6], where zLB = zRMP/(1− rc∗) and rc∗ denotes the
smallest reduced cost discovered. Since constraints (15) restrict the objective value of any
integer solution to be an integer multiple of β = 1+ |S |, the column-generation procedure
is terminated when βdzRMP/βe− zLB < β .

After convergence, an integer solution is obtained by solving the RMP as a MIP, and
its quality is assessed by calculating its optimality gap. Let zMIP denote the objective value
of the MIP solution. The optimality gap is then given by (zMIP− zRMP)/zMIP as zRMP is the
primal lower bound to zMIP. The solution of the first stage is given by the set of selected
inbound routes Ẑ = {r ∈Ω+′ : Xr = 1} and their corresponding drivers D̂ = {Dr : r ∈ Ẑ }.
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min ∑
c∈C

Yc (21)

s.t. ∑
r∈Ω

−
D̂

:c∈Cr

Xr +Yc = 1 ∀c ∈ C (22)

Xr ∈ {0,1} ∀r ∈Ω
−
D̂

(23)

Yc ∈ {0,1} ∀c ∈ C (24)

Fig. 5 The Second-Stage Model for the FCTSP.

4.2 The FCTSP

The FCTSP considers a second stage that reoptimizes the outbound routing plan once de-
parture times have been confirmed by a fixed deadline. Let Ω

−
D̂

be the set of all feasible

outbound routes with drivers from D̂ , i.e. Ω
−
D̂
= {r ∈ Ω− : Dr ∈ D̂}. Its model is defined

in terms of two binary variables: Xr to indicate selection of route r ∈Ω
−
D̂

and Yc to indicate
if rider c cannot be covered in the outbound routing plan. The model is defined in Figure
5. The objective function minimizes the number of uncovered riders and constraints (22)
ensure Yc is set to 1 if rider c cannot be covered by any outbound route.

This model is solved using a column-generation algorithm similar to that used in the first
stage. The key difference is that only outbound routes driven by riders in D̂ are generated in
this model. Letting λc denote the optimal dual of constraints (22) of the model’s RMP, the
reduced cost of outbound route r is given by:

rcr =− ∑
c∈Cr

λc (25)

The PSP of this model finds routes with negative reduced costs by first constructing a graph
Ĝ−c = ( ˆN −

c , ˆA −
c ) for each driver c ∈ D̂ , finding the route with minimum reduced cost from

each Ĝ−c , and adding the route to Ω
−′
D̂

if the cost is negative. The nodes ˆN −
c consist of all

outbound origins O− and destinations D−, and each node i ∈O−∪D− has associated with
it a time window [ai,bi] based on confirmed outbound trip times. Costs of edges (i, j) ∈ ˆA −

c
are given by:

c(i, j) =

{
−λi ∀i ∈ O−

0 ∀i ∈D−
(26)

so that the total cost of any path from oc to dc is equivalent to rcr.
The same wait-time relaxation algorithm from the first stage is used to find the minimum-

cost feasible route from oc to dc from each Ĝ−c . The RMP and PSP are solved repeatedly
until the PSP cannot find any new route with negative reduced cost, after which the RMP is
solved as a MIP to obtain an integer solution.

4.3 The RT-CTSP

Consider now the RT-CTSP where departure times are continuously confirmed by riders
over time. The RT-CTSP requires each rider i to confirm her actual departure time, dtactual

i ,
in advance by at least a time interval ∆lead. In other words, dtactual

i is confirmed at time cti and
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Algorithm 1 Rolling-Horizon Optimization of Outbound Routing Plan
1: k← 1
2: otk ← 0, Zk−1← Ø
3: Zrolling-horizon← Ø, U ← Ø
4: while C 6= Ø do
5: Zrolling-horizon←Zrolling-horizon ∪{r ∈Zk−1 : str ≤ otk}
6: C ← C \{i ∈ Cr : r ∈Zrolling-horizon}
7: U ←U ∪{i ∈ C : boi ≤ otk}
8: C ← C \U
9: Ck ←{i ∈ C : cti ≤ otk}

10: Zk ← Solution of FCTSP reoptimization on outbound trips of riders in Ck
11: k← k+1
12: otk ← otk−1 +∆opt

13: return Zrolling-horizon, U

cti +∆lead ≤ dtactual
i . ∆lead will be referred to henceforth as the lead time, and it is assumed

to be identical for every rider.
A rolling-horizon approach which executes the FCTSP optimization algorithm from

Section 4.2 once every ∆opt, where ∆opt is a fixed time interval, is proposed for this setting.
Let otk denote the time of the kth optimization run of this approach and Zk be its solution
(i.e., its set of selected routes). Each optimization run includes a batch of trips whose depar-
ture times have been confirmed, i.e., the trips of riders {i ∈ C : cti ≤ otk}. At the same time,
a different set of trips is excluded from the kth run. These are trips whose departure-time
windows have expired, i.e., trips of riders {i ∈ C : boi ≤ otk}, and trips covered by routes
from Zk−1 that have already departed. Let str denote the starting time of route r, then the
latter set of excluded trips are those of riders {i ∈ Cr : r ∈Zk−1,str ≤ otk}.

The scheme is executed until each rider i ∈ C is either served by a departed route or has
her departure-time window expire without being served by any route. Riders not served by
any route will have to resort to an external resource to cover their return trips. The rolling-
horizon algorithm is summarized in Algorithm 1. Riders not served by any route are stored
in a set of uncovered riders U , whereas routes that have departed throughout the execution
are stored in Zrolling-horizon which represents the final solution of the approach.

5 Computational Results

The Experimental Setting The algorithms are evaluated on a dataset of real-world commute
trips which is constructed from access information to 15 parking structures in downtown
Ann Arbor, Michigan, collected throughout April 2017. The data is joined with the home
addresses of customers to reconstruct their daily commute trips. The experiments focus on
trips of commuters living within city limits which amounts to approximately 2,400 trips per
weekday. To maintain tractability, the trips are partitioned into smaller problem instances by
clustering the commuters based on their home locations into clusters of size n ≈ 300 and
only considering ride sharing intra-cluster.

Using historical data, a Laplace distribution is fit to the set of daily departure times
of each commuter using maximum likelihood estimation and the distribution is sampled
to generate outbound scenarios. For a selected day, the inbound scenario for a set of com-
muters C is obtained from their arrival times from the dataset. Departure times from the
dataset, however, are treated as expected departure times, and they are used to construct an
expected outbound scenario, sexpected. Actual departure times are simulated by first select-
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Fig. 6 Average Vehicle Counts from the First-Stage Model for Clusters C0-308, C1-309, C2-303, C3-302,
C4-321, and C5-320.

ing a fraction f of the commuters uniformly at random and then sampling their departure-
time distributions. The set C f of selected commuters represents those who had to change
their return schedules. Actual departure times of the remaining commuters in C \C f stay
at their expected values. The experiments consider scenario sets of various sizes, but every
set contains sexpected to ensure every return trip can be covered when there are absolutely no
schedule changes, as sexpected corresponds to the scenario where f = 0.0. Therefore when
|S |= 1, S = {sexpected}. The algorithms are implemented in C++ and they invoke Gurobi
7.5.1 to solve LPs and MIPs. All experiments use K = 4, ∆ = 10 mins, and R = 0.50, and
they are conducted on a high-performance computing cluster with 12 cores of a 2.5 GHz
Intel Xeon E5-2680v3 processor and 32 GB of RAM.

The Impact of the Number of Scenarios on the Number of Vehicles The first set of ex-
periments vary the number of scenarios in the first stage to measure the “price” of ro-
bustness, i.e., its impact on the number of vehicles. Table 1 summarizes the average re-
sults from solving the first-stage model on eight clusters and 20 instances for each |S | ∈
{1,4,8,12,16,20}. Its first three columns list cluster IDs, cluster sizes, and the number of
sampled outbound scenarios used. The next three display the model’s results in terms of the
average number of columns generated, the average vehicle count, and the average optimality
gap of the solution. The final three columns show average times spent on solving the RMP,
the MIP, and the problem instance as a whole. Note that a 60 s time limit was placed on the
MIP solver, and the vehicle count reported is from its best feasible solution. The time limit
allows each problem instance to be solvable in < 15 minutes, and despite the time limit,
every instance produced an optimality gap of < 3%. Figure 6 summarizes the effect of in-
creasing |S | for the first six clusters (the results for the remaining two are consistent). The
key observation is that the vehicle count increases with |S |, a result which can be attributed
to the model having to cater to more outbound scenarios.

The FCTSP The second set of results considers the FCTSP on the same instances for
f ∈ {0.0,0.2,0.4,0.6,0.8,1.0}: f = 0.0 models a scenario whereby none of the commuters
change their departure times, whereas f = 1.0 models one in which every commuter does.
The results are summarized in Table 2. Similar to Table 1, the first three columns display
cluster IDs, cluster sizes, and sampled scenario counts, while the next lists the vehicle count
results of the first-stage model. The final six columns show the average number of uncov-
ered riders resulting from the reoptimized outbound plans of 25 samples for each f value.
Computation times are not shown as every instance was solved in less that 15 s. Figure 7
demonstrates how increasing the number of sampled scenarios improves the robustness of
the outbound plan by showing the average number of uncovered riders for cluster C1-309
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Table 1 First-Stage Optimization Results for |S | ∈ {1,4,8,12,16,20}

Cluster
ID

Cluster
size

Scenario
count

Average
column
count

Average
vehicle
count

Average
optimality
gap (%)

Average wall time (s)

RMP MIP Total

C0-308 308

1 4883.0 153.0 1.31 76.3 3.8 80.1
4 10081.0 178.8 1.46 159.8 49.1 208.9
8 16695.2 194.1 1.16 277.1 46.6 323.7
12 23013.4 205.1 0.93 392.3 30.4 422.8
16 29373.8 212.3 0.75 510.5 19.5 530.0
20 35840.6 216.8 0.72 629.9 17.9 647.9

C1-309 309

1 5398.0 147.0 2.04 90.1 3.2 93.3
4 11459.5 174.1 1.12 188.8 43.9 232.7
8 18684.2 190.8 0.79 297.0 25.1 322.1
12 25834.0 200.1 0.63 418.9 17.2 436.1
16 32887.2 207.1 0.55 541.0 16.8 557.8
20 40018.5 211.9 0.43 658.4 8.4 666.8

C2-303 303

1 5508.0 135.0 1.48 112.9 34.4 147.3
4 12066.0 162.5 1.33 256.8 57.0 313.8
8 20178.2 177.2 1.24 361.9 53.1 415.0
12 27980.1 186.2 0.99 469.9 48.5 518.4
16 35783.6 192.1 0.83 607.4 48.1 655.5
20 43499.9 196.2 0.61 753.7 42.9 796.6

C3-302 302

1 4343.0 157.0 1.27 59.4 2.2 61.6
4 9102.5 179.0 1.00 143.1 38.4 181.5
8 15134.6 195.1 0.79 252.7 26.0 278.7
12 21046.1 205.4 0.51 366.0 14.7 380.7
16 26973.7 211.7 0.52 468.0 11.0 478.9
20 32909.5 216.9 0.39 573.5 7.6 581.0

C4-321 321

1 5828.0 148.0 0.68 88.2 60.0 148.2
4 12828.7 172.4 1.42 226.4 55.3 281.7
8 21312.7 188.6 0.98 371.4 47.7 419.1
12 29317.1 199.2 0.78 500.7 32.4 533.0
16 37375.4 206.9 0.68 649.2 25.5 674.7
20 45243.6 213.9 0.63 780.9 20.1 801.0

C5-320 320

1 4457.0 169.0 1.18 66.4 6.7 73.0
4 9193.4 198.4 0.68 162.0 19.2 181.2
8 15239.4 216.3 0.56 286.5 8.0 294.5
12 21258.2 228.1 0.68 409.9 9.5 419.4
16 27342.9 235.8 0.32 532.7 4.2 536.9
20 33495.3 241.7 0.29 661.2 2.1 663.3

C6-300 300

1 5479.0 137.0 1.46 83.5 43.2 126.8
4 11953.5 160.3 1.53 182.9 57.5 240.5
8 19708.7 177.3 1.10 291.4 40.8 332.2
12 27263.2 186.9 0.75 402.2 26.8 429.0
16 34790.7 194.5 0.62 512.7 22.6 535.3
20 42193.0 200.3 0.50 612.2 15.5 627.7

C7-299 299

1 3952.0 165.0 0.61 61.9 12.2 74.1
4 8724.6 190.8 0.71 145.4 15.8 161.2
8 14866.7 207.6 0.48 252.1 19.5 271.6
12 20976.4 216.6 0.51 356.6 11.6 368.2
16 27013.2 223.4 0.40 468.3 9.6 477.9
20 33037.1 227.9 0.28 575.9 4.8 580.7
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for f ∈ [0.0,1.0]. As expected, all riders are covered when f = 0.0 (as every set S con-
tains sexpected). Moreover, the number of uncovered riders generally increases with f for any
fixed |S |, indicating the increasing challenge of accommodating progressively more chang-
ing schedules. However, when f is fixed, the average number of uncovered riders becomes
smaller as |S | is increased, signifying an increase in plan robustness. The marginal benefits,
however, diminish with increasing |S |, and they come at the price of increases in vehicle
count as shown in Figure 6. This trade-off is further illustrated in Figures 8 and 9 which
plot the average number of uncovered riders for several clusters against their corresponding
vehicle counts for each |S | ∈ {1,4,8,12,16,20} when f = 0.2 and f = 1.0 respectively.
Each point in the figures represents the average number of uncovered riders and the vehicle
count results for a specific |S | value and, for each curve, as |S | increases going from left to
right, so do plan robustness and vehicle count, highlighting the trade-off between robustness
and vehicle reduction.

The RT-CTSP The next results consider the RT-CTSP on the same instances for ∆opt = 10
mins, |S | ∈ {1,12}, and ∆lead ∈ {30,60,90} mins. Table 3 summarizes these results. The
first four columns list cluster IDs, cluster sizes, sampled scenario counts, and lead times val-
ues, while the remaining six show results of the algorithm for each f ∈{0.0,0.2,0.4,0.6,0.8,
1.0} in terms of the average number of uncovered riders from 25 samples for each f value.
Figure 10 then illustrates the results for cluster C1-309 and includes results of the FCTSP for
additional perspective. As expected, the robustness of the rolling-horizon method is never
better than that of the FCTSP. However, results of the former is only slightly worse than the
latter when |S |= 12, demonstrating the viability of the real-time approach. Its results also
quickly approach those of the FCTSP as the lead time is increased.

Evaluating the Plan Robustness-Vehicle Reduction Trade-Off Figure 11 reexamines the av-
erage uncovered riders-vehicle count curve of cluster C2-303 when f = 1.0, which is a
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Table 2 FCTSP Results for |S | ∈ {1,4,8,12,16,20} and f ∈ {0.0,0.2,0.4,0.6,0.8, 1.0}.

Cluster
ID

Cluster
size

Scenario
count

Vehicle
count

Average # of uncovered riders

f = 0.0 f = 0.2 f = 0.4 f = 0.6 f = 0.8 f = 1.0

C0-308 308

1 153 0.0 10.5 17.1 21.3 24.8 25.4
4 177 0.0 4.5 8.1 10.0 10.9 12.0
8 195 0.0 1.4 3.2 4.0 4.8 5.3

12 206 0.0 0.7 1.8 2.1 2.8 2.5
16 212 0.0 0.8 1.3 1.5 2.2 2.5
20 216 0.0 0.5 1.0 1.2 1.4 1.4

C0-308 308

1 153 0.0 10.5 17.1 21.3 24.8 25.4
4 177 0.0 4.5 8.1 10.0 10.9 12.0
8 195 0.0 1.4 3.2 4.0 4.8 5.3

12 206 0.0 0.7 1.8 2.1 2.8 2.5
16 212 0.0 0.8 1.3 1.5 2.2 2.5
20 216 0.0 0.5 1.0 1.2 1.4 1.4

C2-303 303

1 135 0.0 12.4 20.1 25.8 27.2 27.4
4 160 0.0 4.0 7.7 9.8 10.0 10.2
8 175 0.0 2.2 3.8 5.2 5.3 5.4

12 188 0.0 1.8 2.2 2.2 2.3 2.6
16 195 0.0 1.2 1.5 1.4 1.4 1.5
20 196 0.0 0.8 1.2 1.1 1.1 1.4

C3-302 302

1 157 0.0 10.0 17.4 19.3 21.9 20.9
4 178 0.0 4.6 8.1 7.3 8.6 8.4
8 191 0.0 2.8 4.8 4.6 5.5 5.3

12 201 0.0 1.5 3.5 2.8 3.9 3.5
16 211 0.0 0.6 2.2 1.7 2.3 1.8
20 216 0.0 0.4 1.5 1.0 1.9 1.5

C4-321 321

1 148 0.0 9.3 18.2 22.4 24.0 25.0
4 169 0.0 5.2 9.4 11.4 11.4 12.8
8 184 0.0 3.0 4.8 7.0 6.2 7.7

12 195 0.0 1.4 2.6 3.8 3.6 4.6
16 203 0.0 1.0 1.9 3.2 2.5 3.2
20 211 0.0 0.8 1.6 2.4 2.0 2.1

C5-320 320

1 169 0.0 11.1 20.5 26.7 26.8 25.5
4 200 0.0 5.3 10.2 12.1 11.8 11.8
8 218 0.0 2.0 4.8 5.8 5.4 5.1

12 230 0.0 1.4 2.8 3.3 3.1 2.7
16 239 0.0 0.9 1.5 1.8 1.9 1.8
20 245 0.0 0.8 1.2 1.3 1.4 1.3

C6-300 300

1 137 0.0 9.5 17.6 23.5 22.5 22.5
4 158 0.0 3.1 6.8 9.1 9.2 8.9
8 177 0.0 2.1 4.5 5.2 4.9 4.4

12 187 0.0 1.7 3.2 3.9 3.9 3.0
16 192 0.0 1.4 1.7 2.6 2.5 2.0
20 200 0.0 1.0 1.3 1.8 2.0 1.6

C7-299 299

1 165 0.0 8.6 17.4 21.7 23.4 24.0
4 192 0.0 3.9 7.3 8.0 8.0 9.4
8 211 0.0 1.6 2.8 3.3 4.7 3.8

12 218 0.0 1.8 2.8 3.0 3.7 3.7
16 227 0.0 0.8 1.5 1.2 2.4 1.6
20 228 0.0 0.6 1.4 1.1 2.1 1.4
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Table 3 RT-CTSP Results for ∆opt = 10 mins, |S | ∈ {1,12}, ∆lead ∈ {30,60,90} mins, and f ∈
{0.0,0.2,0.4,0.6,0.8,1.0}.

Cluster
ID

Cluster
size

Scenario
count

Lead time
(mins)

Average # of uncovered riders

f = 0.0 f = 0.2 f = 0.4 f = 0.6 f = 0.8 f = 1.0

C0-308 308

1
30 9.0 17.8 24.2 28.7 33.0 33.2
60 1.0 11.8 18.1 22.5 25.8 26.6
90 0.0 11.1 17.4 21.6 25.2 25.7

12
30 0.0 1.7 2.9 3.5 4.8 4.6
60 0.0 0.8 1.8 2.1 2.8 2.6
90 0.0 0.7 1.8 2.1 2.8 2.5

C1-309 309

1
30 5.0 17.0 26.4 31.7 31.5 32.6
60 0.0 11.1 19.8 23.4 24.6 24.9
90 0.0 10.0 18.7 22.0 23.5 24.0

12
30 0.0 1.8 3.0 3.6 4.4 4.0
60 0.0 0.7 1.8 2.0 2.2 2.6
90 0.0 0.7 1.8 2.0 2.2 2.6

C2-303 303

1
30 6.0 19.6 28.2 33.7 34.9 35.6
60 0.0 14.1 21.4 27.3 28.4 28.8
90 0.0 13.0 20.5 26.4 27.6 27.9

12
30 3.0 4.3 4.6 4.9 5.2 6.4
60 0.0 2.2 2.4 2.4 2.4 2.8
90 0.0 1.9 2.2 2.2 2.3 2.6

C3-302 302

1
30 3.0 16.4 24.7 26.5 28.5 28.1
60 0.0 11.1 18.4 20.5 22.2 21.8
90 0.0 10.4 17.6 19.5 22.0 21.0

12
30 0.0 2.9 5.4 5.1 6.3 5.4
60 0.0 1.6 3.6 3.0 4.1 3.6
90 0.0 1.5 3.5 2.8 3.9 3.5

C4-321 321

1
30 6.0 17.3 27.0 31.5 32.7 34.1
60 0.0 11.0 20.0 24.4 26.1 26.9
90 0.0 10.0 18.8 23.0 24.7 25.6

12
30 2.0 4.4 5.6 6.3 6.0 8.0
60 0.0 1.6 2.8 3.9 3.8 5.1
90 0.0 1.4 2.6 3.8 3.6 4.7

C5-320 320

1
30 1.0 16.3 27.5 32.1 32.7 31.6
60 0.0 12.2 21.7 27.3 27.7 26.1
90 0.0 11.6 20.8 26.7 27.0 25.6

12
30 1.0 2.8 4.0 4.9 4.4 3.8
60 0.0 1.5 2.9 3.4 3.1 2.8
90 0.0 1.4 2.8 3.3 3.1 2.7

C6-300 300

1
30 8.0 16.8 26.3 32.4 30.9 30.6
60 0.0 11.2 19.4 25.6 24.0 24.0
90 0.0 10.1 18.2 23.9 22.9 23.1

12
30 2.0 3.1 5.5 6.6 6.3 6.0
60 0.0 1.8 3.3 4.1 4.1 3.0
90 0.0 1.7 3.3 4.0 3.9 3.0

C7-299 299

1
30 5.0 14.6 22.9 27.0 28.3 29.6
60 0.0 9.6 18.4 22.7 23.8 24.6
90 0.0 8.7 17.6 21.8 23.4 24.1

12
30 1.0 3.3 4.2 4.6 5.0 5.0
60 0.0 2.0 3.0 3.1 3.8 3.7
90 0.0 1.9 2.8 3.0 3.7 3.7
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Curve of Cluster C2-303 when f = 1.0.

worst-case scenario obviously. Each point on the curve represents a potential operating point
for the ride-sharing platform, and the goal is to find the point with the best trade-off between
plan robustness and vehicle reduction. Let ∆u and ∆v denote the change in the number of un-
covered riders and the change in vehicle count respectively resulting from moving between
two points along the curve, and let cu and cv be the cost per uncovered rider and the cost per
unit of vehicle increase respectively. The marginal cost when moving between two points
is therefore given by ∆ucu +∆vcv. Having negative marginal cost will lead to reductions in
operating cost, and therefore moving from one point on the curve to another is beneficial
when ∆ucu +∆vcv < 0. Rearranging the inequality results in cv/cu <−∆u/∆v where ∆u/∆v
is given by the slope of the curve. Therefore, it is beneficial to move right along the curve
when the cv/cu ratio is less then the negative of the curve’s slope.

For instance, consider the leftmost curve segment in Figure 11 which has a slope of
−0.69. Suppose the cost of an uncovered rider is given by the average price of using a
ride-hailing service to cover a return trip, while the cost per unit of vehicle increase is well
represented by the per-day cost of a parking lot (which in turn is given by its total cost
amortized over its useful lifetime). Then suppose a scenario in which cu = $15 and cv = $8.
The cv/cu ratio is 0.53 which is less than the negative of the slope. Therefore it is beneficial
to move from the point with |S |= 1 to that with |S |= 4 as it will result in a marginal cost
of −$57. However, suppose an alternate scenario whereby cu = cv = $12. The cv/cu ratio
is now 1.0 which is larger than the negative of the slope. In this case, it is beneficial to just
stay at the point where |S | = 1 as moving to the right neighboring point will result in an
increase in operating cost.

6 Conclusion

This paper proposes a two-stage algorithm for generating robust plans for the FCTSP and
the RT-CTSP. It addresses a practical setting in which there are uncertainties associated
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with the schedules of outbound trips by incorporating scenario sampling, a method which
assumes the availability of historical data on trip schedules to which probability distributions
can be fit and sampled to obtain potential scenarios. A model which optimizes the routing
plan for a single inbound and multiple sampled outbound scenarios is first solved to select
daily drivers and their inbound routes. The outbound routing plan is then obtained either
statically for the FCTSP or dynamically for the RT-FCTSP by solving a different model on
just outbound trips once their schedules have been confirmed. When applied on a real-world
dataset of commute trips, the results show that plan robustness generally increases with
sampled scenario count. The only drawback is that the robustness is also accompanied by
an increase in vehicle count. Therefore, a method which compares the per-unit price ratio of
vehicle increase to uncovered riders is proposed to best evaluate the trade-off between plan
robustness and vehicle reduction.
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