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Abstract

With rapid population growth and urbanization, emergency
services in various cities around the world worry that the cur-
rent transportation infrastructure is no longer adequate for
large-scale evacuations. This paper considers how to mitigate
this issue through infrastructure upgrades, such as the addi-
tions of lanes to road segments and the raising of bridges and
roads. The paper proposes a MIP model for deciding the most
effective infrastructure upgrades as well as a Benders decom-
position approach where the master problem jointly plans the
upgrades and evacuation routes and the subproblem sched-
ules the evacuation itself. Experimental results demonstrate
the practicability of the approach on a real case study, filling
a significant need for emergencies services.

Introduction

With rapid population growth and increased urbanization,
emergency services in various cities around the world worry
that the current transportation infrastructure is no longer ad-
equate for large-scale evacuations. In some cities, the in-
frastructure, and in particular the road network, has not kept
up with population growth (Feneley 2015). This is espe-
cially worrisome given that existing infrastructure capac-
ity is often well below the level what would be required
for effective large-scale evacuations (Litman 2006). Yet lit-
tle research on evacuation planning includes the possibility
of improving road infrastructure. Some studies use con-
traflow in order to increase road capacities (Wolshon 2001;
Theodoulou and Wolshon 2004; Even, Pillac, and Van Hen-
tenryck 2014; Kim, Shekhar, and Min 2010). However, Wol-
shon (2001) warns that the presence of contraflow lanes can
lead to congestion due to drivers’ unfamiliarity with lane re-
versal. Peeta et al. (2010) considered structural upgrades
that would strengthen roads against earthquake damage. In
their model, the upgrades increase the probability that a road
will withstand an earthquake.

In this paper, we attempt to fill this gap in the litera-
ture. We study how to upgrade the road network in order to
maximize the number of evacuees reaching safety given an
infrastructure budget. We consider zone-based evacuation
planning over convergent plans and two types of upgrades:
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adding lanes to selected road segments and raising road seg-
ments so that they survive the flood. Zone-based evacuations
assign a unique path to safety to each residential area, which
makes mobilization and evacuation operations simpler to ex-
ecute. Convergent plans ensure that there are no forks in
the evacuation graph, making plan compliance simpler to
enforce. Convergent plans also eliminate forks in the evac-
uation graph, which may lead to congestion due to driver
hesitation (Wolshon, Catarella-Michel, and Lambert 2006).
Even, Pillac, and Van Hentenryck (2015) showed that con-
vergent plans can bring significant benefits on a flood case
study in West Sydney, Australia.

To decide which infrastructure enhancements to perform,
we present two approaches: 1) A MIP model whose decision
variables are the infrastructure investment, the evacuation
paths, and the evacuation schedule; 2) A Benders decompo-
sition whose master variables are the investment decisions
and the evacuation paths and the subproblem variables de-
note the evacuation schedule.

Experimental results evaluate the practicability of the ap-
proaches on the case study presented by Even, Pillac, and
Van Hentenryck (2015) concerning a flood event in the
Hawkesbury-Nepean region in the West of Sydney. Our re-
sults indicate the practibility of our Benders decomposition
approach which significantly outperforms the MIP model
and exbihits small optimality gaps in reasonable time. Our
results also report on the tradeoff between the quality of the
evacuation plans and the budget.

The rest of this paper is organized as follows. We first
review the literature on the relevant evacuation planning al-
gorithms. We then present the problem modeling, the MIP
model, and the Benders decomposition approach. Finally,
we present the experimental results and conclude the paper.
Note that, although the results are presented for convergent
plans, the approaches can be generalized to arbitrary zone-
based evacuations.

Literature Review

In this paper, we consider a macroscopic approach to evacu-
ation planning, where evacuees are not modeled individually
but as flows in the space-time representation of the road net-
work (Hamacher and Tjandra 2002). Almost all the macro-
scopic evacuations consider dynamic network flow prob-
lems following the pioneering work of (Ford and Fulkerson
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1958) on the Maximum Dynamic Network Flow Problem
(MDFP) for shipping goods. See also (Chen and Chin 1990;
Burkard, Dlaska, and Klinz 1993; Hoppe and Tardos 1995;
Choi, Hamacher, and Tufekci 1988; Chalmet, Francis, and
Saunders 1982; Yamada 1996). However, emergency ser-
vices often prefer zone-based evacuations, in which all resi-
dents in a residential area are assigned the same evacuation
path in order to avoid confusion and increase compliance.
Zone-based evacuations were studied in a number of papers
including, for instance, (Bish and Sherali 2013; Huibregtse
et al. 2011; Even, Pillac, and Van Hentenryck 2015). Zone-
based evacuation over convergent plans was studied in (An-
dreas and Smith 2009; Even, Pillac, and Van Hentenryck
2015). The use of Benders decomposition in evacuation
planning was considered in (Chen and Miller-Hooks 2008;
Andreas and Smith 2009). Chen and Miller-Hooks (2008)
used Benders decomposition for quickest flow problem in a
building evacuation problem with shared Information. An-
dreas and Smith (2009) solved a variant of the quickest flow
problem, using arc traversal penalty functions in order to
encourage earlier evacuation. The model includes a number
of possible scenarios, each with a given probability of oc-
curring, and the objective is to minimize the expected sum
of arc traversal penalties. The work by Even, Pillac, and
Van Hentenryck (2015) is particularly relevant to this paper.
They propose a two-stage approach for zone-based evacu-
ation planning, where the first stage is a tree design prob-
lem which gives an upper bound to the number of evacuees
reaching safety by aggregating the arc capacities. The tree
design problem chooses the evacuation paths for the zone-
based evacuation planning, while the second stage schedules
the evacuation over these paths. The Benders decomposition
presented in this paper transforms this two-stage approach
into a Benders decomposition approach and generalizes the
tree design problem into a restricted master problem which
also includes decisions for infrastructure enhancement. Our
initial master also gives an upper bound to the objective of
the original problem and Pareto-optimal Benders cuts are
generated at each iteration.

Problem Description
Following Even, Pillac, and Van Hentenryck (2015), we
model the evacuation scenario with an evacuation graph
G = (N = E ∪ T ∪ S,A), where E , T , and S are the
set of evacuation, transit, and safe nodes respectively, and A
is the set of arcs. Each evacuation node i is associated with
a demand di. Each arc e is labeled with its travel time se, its
capacity ue, and the time fe when it becomes flooded over.
Figure 1 gives an example of such a model. Figure 1a illus-
trates an evacuation scenario that has one evacuation node
labeled “0”, and two safe nodes labelled “A” and “B”. The
times on each arc indicate when the flood would arrive if the
road were not elevated. Figure 1b is an evacuation graph
based on the evacuation scenario. There is a demand of 20
vehicles from the evacuation node. Arc (0, 1) has a travel
time of 2 minutes and a capacity of 5 vehicles/minute, and
will be flooded at 13:00 if it is not elevated.

We express the spatio-temporal aspect of the problem
through a time-expanded graph Gx = (N x = Ex ∪ T x ∪

(a) Evacuation scenario (b) Evacuation graph

(c) Time-expanded graph

Figure 1: Modeling of an Evacuation Planning Problem.
(Source: Even, Pillac, and Van Hentenryck (2015)).

Sx,Ax). In the time-expanded graph, there is a copy of each
static node for each discrete time step within the horizon.
The set Ax contains time edges et = (it, jt+s(i,j)) corre-
sponding to static edges e = (i, j), for each such pair of
times within the horizon. Figure 1c is the time-expanded
graph for this scenario.

There are two possible infrastructure upgrades: adding
new lanes and elevating roads. Each lane has an existing
number of lanes ne, as well as a maximum number of lanes
that can be added n+

e . We assume that capacity increases lin-
early with the number of lanes. Each road segment can also
be elevated, extending its availability by a given amount of
time. The costs of the upgrades are given by cl(e) for adding
a single lane to arc e and ce(e) for elevating arc e to extend
its availability by a single time step. These costs are given
per unit length. The Convergent Evacuation Network Design
Problem can now be defined:

Definition 1. The Convergent Evacuation Network Design
Problem (CENDP) consists in finding a convergent evacua-
tion plan that includes two kinds of infrastructure upgrades:
lane additions and road elevations.

The MIP Model

This section presents a MIP model for solving the CENDP.
The decision variables in the model are as follows: Variable
xe is binary and represents whether arc e is selected, variable
ϕet is continuous and denotes the flow on arc et ∈ Ax, vari-
able ze is integer and indicates the number of lanes added
to arc e, and variable vet is binary and indicates whether
arc e is available at time t according to its road elevation.
The objective (1) maximizes the total flow of evacuees, with
δ−(k) and δ+(k) respectively denoting the set of incoming
and outgoing edges of node k. For simplicity, we assume
that all roads have the same limit n+ on the number of ad-
ditional lanes and that the upgrade costs per unit distance
are the same for all edges (cl and ce). It is easy to general-
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ize the model to remove these assumptions. The MIP model
operates on the expanded graph and is given by

max
∑
k∈E

∑
et∈δ+(k)

ϕet (1)

s.t.∑
et∈δ−(i)

ϕet −
∑

et∈δ+(i)

ϕet = 0 ∀i ∈ T x

(2)∑
e∈δ+(i)

xe ≤ 1 ∀i ∈ E ∪ T

(3)

ϕet ≤ xe

(
1 +

n+

ne

)
uet ∀e ∈ A, ∀t ∈ H

(4)

ϕet ≤ vet

(
1 +

ze
ne

)
uet ∀e ∈ A, ∀t ∈ H

(5)∑
et∈δ+(k)

ϕet ≤ dk ∀k ∈ E

(6)
vet ≥ vet+1 ∀et, et+1 ∈ Ax

(7)
vet = 1 ∀e ∈ A, ∀t ∈ [0, fe)

(8)
h∑

t=fe

vet = we ∀e ∈ A

(9)∑
e∈A

le (cl · ze + ce · we) ≤ B (10)

ze ≤ n+ ∀e ∈ A
(11)

ϕet ≥ 0 ∀e ∈ A
(12)

xe ∈ {0, 1} ∀e ∈ A
(13)

ze, we ∈ Z
+ ∀e ∈ A

(14)
vet ∈ {0, 1} ∀e ∈ A, ∀t ∈ H

(15)

Constraints (2) enforce flow conservation at each transit
node, constraints (3) impose that the evacuation plan satis-
fies a tree structure (thus producing a convergent plan), and
constraints (4) ensure that evacuation flows only travel on
selected edges. Constraints (5) limit the flows to the edge ca-
pacities and capture the fact that the road capacity increases
linearly with the number of lanes. Constraints (6) make sure
that the total outflow of evacuees of each evacuation node
does not exceed the node demand. Constraints (7) ensure
that road blockages due to the flood persists until the time

horizon and constraints (8) express the road availability be-
fore the onset of the flood. Constraints (9) capture the possi-
bility of raising a road for a number of time steps. Constraint
(10) is the budget constraint, where le is the length of arc e
and we is number of units of elevation upgrades on e.

It is important to note that constraints (5) are nonlinear as
they contain products of two decision variables. However,
these products can be linearized since variables vet are bi-
nary. The next section, which presents the Benders decom-
position, will illustrate this in more detail.

Benders Decomposition

The second approach considered in this paper is a Benders
decomposition which separate the decision variables in two
stages. The Restricted Master Problem (RMP) selects a set
of convergent paths and infrastructure upgrades. The Sub-
problem (SP) schedules the departure times of evacuees.
The RMP remains a MIP model but on the evacuation graph
and not its time-expanded counterpart. The SP is a linear
program on the expanded graph. A Benders decomposition
proceeds as follows:

1. It first solves the RMP obtaining optimal values for the
RMP decision variables;

2. It then solves the SP with the RMP variables fixed to their
optimal values;

3. If the objective values of the RMP and SP coincide, the
solution is optimal. Otherwise, a Benders cut is generated
from the optimal solution of the SP and added to the RMP
and the process is iterated.

In the Benders decomposition considered here, the SP is
always feasible and the Benders constraints are optimality-
based cuts. The RMP always returns an upper bound to the
optimal number of evacuaees reaching safety, while the SP
returns a feasible solution. We now go into the details of the
Benders decomposition which uses Pareto-optimal cuts.

The Restricted Master Problem

We first present the RMP without the Benders cuts which
will be derived from the SP. As mentioned previously, the
RMP operates on the evacuation graph, not its time expan-
sion. However, to produce reasonable evacuation plans and
infrastructure improvements to seed the Benders decompo-
sition, we use an idea from Even, Pillac, and Van Henten-
ryck (2015) and aggregate capacities over time for each arc
in the graph. This makes it possible to have a RMP which
provides an upper bound to the optimal value, while still
working on the evacuation graph. Besides the decision vari-
ables xe, ze, and vet , the RMP also uses a variable ψe to
represent the aggregate flow of evacuees over time along arc
e.1 The objective of the RMP is to maximize the aggregate
flow from evacuation nodes to safe nodes within the time
horizon, given the infrastructure upgrade budget. The RMP
can thus be specified as follows and can really be seen as an
aggregation of the MIP model:

1The RMP can be simplified by aggregating the decision vari-
ables vet , but we kept this formulation for simplicity.
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max
∑
k∈E

∑
e∈δ+(k)

ψe (16)

s.t.∑
e∈δ−(i)

ψe −
∑

e∈δ+(i)

ψe = 0 ∀i ∈ T

(17)∑
e∈δ+(i)

xe ≤ 1 ∀i ∈ E ∪ T

(18)

ψe ≤ xe

(
1 +

n+

ne

)∑
t∈H

uet ∀e ∈ A

(19)

ψe ≤
(
1 +

ze
ne

)∑
t∈H

vet · uet ∀e ∈ A

(20)∑
e∈δ+(k)

ψe ≤ dk ∀k ∈ E

(21)
vet ≥ vet+1

∀et, et+1 ∈ Ax

(22)
vet = 1 ∀e ∈ A, ∀t ∈ [0, fe)

(23)
h∑

t=fe

vet = we ∀e ∈ A

(24)∑
e∈A

le (cl · ze + ce · we) ≤ B (25)

ze ≤ n+ ∀e ∈ A
(26)

ψe ≥ 0 ∀e ∈ A
(27)

xe ∈ {0, 1} ∀e ∈ A
(28)

ze, we ∈ Z
+ ∀e ∈ A

(29)
vet ∈ {0, 1} ∀e ∈ A, ∀t ∈ H

(30)
Constraints (17) impose the aggregate flow conservation at
each transit node, constraints (18) enforce a tree structure,
and constraints (19) ensure that flow will only be sent on se-
lected arcs. Constraints (20) and (21) are the capacity and
demand constraints, and constraint (25) is the budget con-
straint. The objective (16) maximizes the aggregate flow.
Constraints (20) are nonlinear as they contain products of
variables ze · vet . These constraints can be linearized by re-
placing each product with a new variable pet to represent
such a product and adding the following constraints:
pet ≤ ze ∀e ∈ A, ∀t ∈ H (31)

pet ≤ vet · n+ ∀e ∈ A, ∀t ∈ H (32)

pet ∈ Z
+ ∀e ∈ A, ∀t ∈ H (33)

We now show that the RMP is an upper bound to the
CENDP. The proof is an extension of the result by Even,
Pillac, and Van Hentenryck (2015) for the simpler case with
no infrastructure enhancements.
Theorem 1. The optimal solution of the RMP is an upper
bound to the CENDP.

Proof. The proof relies on showing that any optimal
solution to the CENDP is also a feasible solution to
the RMP with the same objective value. Let Φ =
({ϕet}, {xe}, {ze}, {vet}) be an optimal solution to the
CENDP, with an objective value of z(Φ). Clearly, con-
straints (18) and (22) through (30) in the RMP will be satis-
fied. Let

ψe =
∑
t∈H

ϕet

for each arc e ∈ A. The objective value of the RMP will be
the same as the CENDP because

z(Φ) =
∑
k∈E

∑
et∈δ+(k)

ϕet

≡
∑
k∈E

∑
e∈δ+(k)

∑
t∈H

ϕet

=
∑
k∈E

∑
e∈δ+(k)

ψe

Since Φ is a solution to the CENDP, we have∑
et∈δ−(i)

ϕet −
∑

et∈δ+(i)

ϕet = 0 ∀i ∈ T x

⇒
∑

e∈δ−(i)

∑
t∈H

ϕet −
∑

e∈δ+(i)

∑
t∈H

ϕet = 0 ∀i ∈ T

⇒
∑

e∈δ−(i)

ψe −
∑

e∈δ+(i)

ψe = 0 ∀i ∈ T

so that constraints (17) are satisfied. Similarly,

ϕet ≤ xe

(
1 +

n+

ne

)
uet ∀e ∈ A, ∀t ∈ H

⇒
∑
t∈H

ϕet ≤
∑
t∈H

xe

(
1 +

n+

ne

)
uet ∀e ∈ A

⇒ ψe ≤ xe

(
1 +

n+

ne

)∑
t∈H

uet ∀e ∈ A

satisfying constraints (19). Also,

ϕet ≤ vet

(
1 +

ze
ne

)
uet ∀e ∈ A, ∀t ∈ H

⇒
∑
t∈H

ϕet ≤
∑
t∈H

vet

(
1 +

ze
ne

)
uet ∀e ∈ A, ∀t ∈ H

⇒ ψe ≤
(
1 +

ze
ne

)∑
t∈H

vet · uet ∀e ∈ A
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Finally,∑
et∈δ+(k)

ϕet ≤ dk ∀k ∈ E

≡
∑

e∈δ+(k)

∑
t∈H

ϕet ≤ dk ∀k ∈ E

⇒
∑

e∈δ+(k)

ψe ≤ dk ∀k ∈ E

The Subproblem

The RMP produces a convergent evacuation graph G with
infrastructure upgrades, specified by the optimal values xe,
ze, and vet for the RMP decision variables xe, ze, and vet .
The SP uses these optimal values to determine the departure
times of evacuees in the expanded graphs maximizing the
number of evacuees reaching safety. The SP can be formu-
lated as follows:

max
∑
k∈E

∑
et∈δ+(k)

ϕet (34)

s.t.∑
et∈δ−(i)

ϕet −
∑

et∈δ+(i)

ϕet = 0 ∀i ∈ T x (35)

ϕet ≤ xe · uet

(
1 +

n+

ne

)
∀e ∈ A, ∀t ∈ H (36)

ϕet ≤ vet · uet (1 + zene) ∀e ∈ A, ∀t ∈ H (37)∑
et∈δ+(k)

ϕet ≤ dk ∀k ∈ E (38)

ϕet ≥ 0 ∀et ∈ Ax (39)
Constraints (35) are the flow conservation constraints. Con-
straints (36) ensure that flow will only be sent on edges in
the network. Constraints (37) and (38) are the capacity and
demand constraints. Note that the right-hand sides of con-
straints (36), (37), and (38) are constants. The objective (34)
maximizes the flow.

The Restricted Master Problem Revisited

After each iteration of the RMP and SP, and whenever the
objective value of the SP is smaller than the objective value
of the RMP, the Benders decomposition algorithm generates
a cut of the form:

z ≤
∑
e∈A

xe

(
1 +

n+

ne

)∑
t∈H

uet · yet

+
∑
e∈A

∑
t∈H

(
vet · uet +

pet · uet

ne

)
y′et

+
∑
k∈E

dk · yk (40)

where {yet}, {y′et}, and {yk} are the dual variables asso-
ciated with SP constraints (36), (37), and (38) respectively.
These constraints accumulate in the RMP, which remains an
upper bound to the CENDP since the Benders cuts are valid
and do not remove optimal solutions.

Pareto-Optimal Cuts

It is well-known that a Benders decomposition with a flow-
based subproblem may be slow to converge, as the SP may
have many optimal solutions. Hence many Benders cuts
may need to be generated. To strengthen the Benders cuts,
we use the Magnanti-Wong method (Magnati and Wong
1981), which generates Pareto-optimal cuts for the restricted
master problem. A Pareto-optimal cut is defined as a cut
that is not dominated by any other cut for a given iteration
of the decomposition. Denote by X the convex hull of the
feasible solutions to the RMP, i.e., feasible assignments for
variables xe, ze, and vet . The Magnanti-Wong method uses
a core point of X in order to generate a Pareto-optimal cut,
i.e., a point x0 in the interior of X . To generate a Pareto-
optimal Benders cut, it is necessary to solve the dual of the
Magnanti-Wong Problem:

max
∑
k∈E

(
∑

et∈δ+(k)

ϕet + ξ
∑

et∈δ+(k)

ϕ̄et)

s.t.∑
et∈δ−(i)

ϕet −
∑

et∈δ+(i)

ϕet = 0 ∀i ∈ T x

ϕet + x̄e · uet

(
1 +

n+

ne

)
· ξ

≤ x0
e · uet

(
1 +

n+

ne

)
∀e ∈ A, t ∈ H

ϕet + v̄et · uet

(
1 +

z̄e
ne

)
· ξ

≤ v0et · uet

(
1 +

zoe
ne

)
∀e ∈ A, t ∈ H

∑
et∈δ+(k)

ϕet + dk · ξ ≤ dk ∀k ∈ E

ϕet ≥ 0 ∀et ∈ Ax

where {x̄e}, {z̄e} and {v̄et} are from the optimal solution
to the RMP and {ϕ̄et} are from the optimal solution to the
SP. We set the core point to be the center point of the convex
hull of the domain: x0

e = 1
2∀e ∈ A, z0e = n+

2 ∀e ∈ A, v0et =
1∀e ∈ A, t ∈ [0, fe), and v0et = 1

2∀e ∈ A, t ∈ [fe, h]. The
Benders cuts use dual variables from the Magnanti-Wong
Problem, which means {yet}, {y′et}, and {yk} are the dual
variables of the three inequality constraints.

Experimental Results

The MIP and the Benders decomposition approaches were
applied to the evacuation of the Hawkesbury-Nepean (HN)
floodplain, located near Sydney. This region was also con-
sidered by Even, Pillac, and Van Hentenryck (2015) but,
since their work, there have been increasing concerns that
the road infrastructure has not kept up with population
growth (see, for instance, (Feneley 2015)). This region is
a large floodplain protected by the Warrangaba Dam from
the Blue Montains where precipitation accumulates. The
dam spills over every year and the authorities are worried
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Benders Decomposition MIP

Instance CPU (s) LRMP (%) BD (%) BD10 (%) Gap (%) Perc. Evac. %Imp

HN-1.7

300 min 779.7 100 98.2 94.5 1.8 87.5 12.2
360 min 885.6 100 99.2 97.7 0.8 99.2 0.0
420 min 386.9 100 100 100 0 99.0 1.0

HN-2.0

300 min 763.1 100 96.1 92.9 4.0 89.4 7.5
360 min 3585.3 100 98.6 97.5 1.4 91.7 7.5
420 min 2559.5 100 99.5 99.2 0.5 87.9 13.1

HN-2.5

300 min 29.8 100 88.9 88.9 12.5 78.6 13.1
360 min 524.4 100 96.9 96.9 3.2 82.5 17.4
420 min 1069.9 100 97.0 96.3 3.1 80.7 20.2

HN-3.0

300 min 616.7 100 81.5 80.2 22.6 65.6 24.3
360 min 1884.1 100 86.5 84.2 15.6 67.9 27.5
420 min 931.3 100 90.9 87.1 10.0 70.6 28.9

Table 1: Results for the HN-1.7, 2.0, 2.5, and 3.0 Instances.

about the need to evacuate the flood plain which hosts about
80,000 people. We consider a number of worst-case scenar-
ios where a significant (1 in 100 years) flood would reach
the flood plain after 5, 6, or 7 hours respectively and uses
the flood extent as computed by standard 2D hydro-dynamic
flood simulation models. The road infrastructure consists of
80 evacuation nodes, 184 transit nodes, 5 safe nodes, and
580 arcs. The time horizon was discretized into 5 minute
intervals. The upgrade costs were taken to be 5 units per
kilometer of additional lanes built and 0.01 units per kilo-
meter for elevating a road to extend its availability by one
time step. Unless otherwise stated, the budget is 100 units.
The population was scaled by a factor x ∈ [1.7, 3] to model
population growth in the Hawkesbury-Nepean region. Each
instance was run for up to one hour. The algorithms were
implemented using JAVA 8 with GUROBI 6.0 and run on a
64 bit machine with a 1.4 GHz Intel Core i5 processor and 4
GB of RAM under OSX 10.10.5.

Table 1 compares the percent evacuated by the Benders
decomposition and the MIP model (1 h) on four population
instances and three flood scenarios. The CPU times corre-
spond to when the best FSP value was found by the Ben-
ders decomposition. The LRMP is the last Restricted Mas-
ter Problem solution, and BD is the Benders decomposition
solution. Column BD10 is the best Benders decomposition
solution after 10 minutes. The gap is between the LRMP
and best BD and is calculated as z(LRMP(G,H,B))−z(BD(G,H,B)

z(BD(G,H,B) .
Column %Imp is the improvement of the Benders approach
over the MIP model in percentage.

The duality gaps are quite small for instance HN-1.7, but
increase with the population growth. The Benders decom-
position provides significant improvements compared to the
MIP model: The difference in quality grows as the popu-
lation increases and the Benders decomposition evacuates
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Figure 2: Perc. of People Evacuated for Given Budgets.

about 30% more people on the last instance. The Benders
decomposition after 10 minutes also improves the MIP in
all but one instance, evacuating up to 23% more people.

Figure 2 shows the effect of varying the budget parameter
for Instance 1.7 with a flood arriving at the 360 minute mark,
a profile emergency services are keen to study. The graph
shows that the performance of MIP model degrades substan-
tially when the budget is tight and performs reasonably when
the budget is sufficiently large to evacuate everyone. In con-
trast, the Benders formulation produces excellent results for
all budgets. This confirms the findings of Table 1, where the
quality differences between the Benders decomposition and
the MIP model increase with population growth. This is es-
pecially relevant, since infrastructure improvement projects
traditionally operate under tight budgets.
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Conclusion

In this paper, we introduced the Convergent Evacuation
Network Design Problem (CENDP) for creating convergent
evacuation plans with infrastructure upgrades. We proposed
a MIP model and a Benders decomposition approach for
solving the CENDP. The aprroaches were tested on a case
study for a flood plain West of Sydney where the road in-
frastructure has not kept up with population growth, creat-
ing significant concerns from emergency services (Feneley
2015). Experimental results show that the Benders decom-
position performed significantly better than the MIP model,
evacuating as much as 28.9% more people on the instances
with higher population growth. Varying the budget for the
easiest instance revealed the large gap in solution quality be-
tween the Benders approach and the MIP model, especially
when the budget is tight which is the typical case in infras-
tructure improvement studies.

Overall, our results show that Benders decomposition pro-
vides a novel tool for emergency services that seek to im-
prove their road infrastructure to meet the evacuation needs
coming from increased urbanization. Our current work fo-
cuses on generalizing the Benders decomposition to handle
uncertainty by considering multiple disaster scenarios.
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